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1.1. Abstract

Interactions of many biomolecules drive life at the molecular level. The incred-

ible advances in sequencing techniques have led to a vast and rapidly growing

treasure trove of genomic data. This wealth of genomic data can be analyzed

by advanced statistical methods to accurately infer pairs of residues or contacts

which have co-evolved. One such method, direct-coupling analysis (DCA), is

based on statistical physics by describing co-evolution via an inverse Potts

model. DCA predict inter-residue contacts which can be used as spatial con-

straints in structure prediction tools to predict, e.g., proteins, RNA, and their
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complexes. In this chapter, we will introduce the mathematical framework of

DCA, investigate its limits and exemplify applications with a focus on protein

complexes.

1.2. Introduction

Life is organized hierarchically from the molecular level, where life is orga-

nized by biomolecules such as DNA, proteins, or RNA and their interactions,

over cells and their compartments [36] up to organs, organisms or even whole

ecosystems. At the molecular level are biomolecules the key players. Despite

their simple buildup by nucleic acids or amino acids biomolecules realize an

incredible diversity of functions in living organisms. Examples include the stor-

age, handling, and readout of genetic information in DNA, enzymatic function,

molecular sensing and signaling, motion (e.g. muscles, cell motion) or struc-

tural stability (e.g. collagen, hair, or spider silk). To mechanistically understand

biomolecular function, however, one must know the unique biomolecular struc-

ture, i.e. the three-dimensional arrangement of all atoms inside the biomolecule.

Common experimental techniques used in structure determination have made

incredible progress but also have their limits and are often quite involved.

One of the oldest and best known method, X-ray crystallography, requires the

growth of crystals of the investigated biomolecules and subsequent interpreta-

tion of scattering data. Nuclear magnetic resonance (NMR), in contrast, does

not require such crystals and can directly be applied to biomolecules in solu-

tion but relies on the correct assignment of NMR shifts, which gets increasingly

difficult for larger systems. The use of cryo election microscopy (CryoEM) has

skyrocketed in the last decade, but still relies on automatized interpretation

2



of large data sets thus involved highly optimized workflows[63]. Small angle

x-ray scattering (SAXS) is experimentally quite simple, but only provides low-

resolution information which has to be carefully interpreted[77, 38, 62]. So are

there are possible theoretical complements to these experimental approaches?

In-silico protein structure prediction has a long history [44, 33, 34, 65, 55,

10, 83, 45, 43, 21, 53, 1, 29, 81, 70] and can complement experimental work.

Commonly summed up under ”structure prediction tools”, there are many

Ansätze tackling the challenge of providing biomolecular structures from their

sequence alone. Homologue Modelling tools rely on the structural similarity

of evolutionary related biomolecules and use experimentally resolved known

structures as templates upon which unknown structures can be build. If no evo-

lutionary similar structures are known, one could predict a biomolecular struc-

ture from its sequence alone by, e.g., identifying the global free-energy mini-

mum in a suitable physics-based force fields. Such a global search is challenging

due to the gigantic search space. Any guidance towards the global minimum

would support the search by reducing this search space. In 2009, a methods

coined Direct Coupling Analysis (DCA) provided such guidance by investigat-

ing the mutational patterns of co-evolution[78] and applied this approach to

blind prediction of a protein complex[68]. As highlighted in Fig. 1.2, co-evolving

residue pairs are considered spatially adjacent or contacts, as evolution put con-

strains on mutations by the need to maintaining structure and function. While

the general idea was already proposed in the 1990’s, earlier methods[31, 54, 47]

based on Mutual Information were plagued by high number of false positive

contact predictions due to only accounting for strictly pairwise correlations

while disregarding the the global context of other residues. DCA[78, 68, 67, 50]
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considers this global context and is based on inverse problems in statistical

physics, so-called inverse Potts Models. In short, DCA mimics fitness land-

scapes of proteins and drastically improves signal-to-noise ratios [19, 52, 28, 46].

DCA has inspired similar approaches[48, 3, 40, 25, 49, 57] for tracing co-

evolution. In a typical interpretation, such co-evolving residue pairs are con-

sidered spatially adjacent contacts and exploited as structural constraints in

molecular modeling tools for proteins [68, 48, 71, 17, 39, 56, 73, 57, 58, 75]

but also for RNA [20, 79, 60]. Remarkably, the Hamiltonian can be consid-

ered a fitness landscape and thus infer biomolecular function such as biological

signaling[15], antibiotics resistance [28], or protein/ protein interactions [32, 7].

1.3. Short Introduction into Biomolec-

ular Modeling

A realistic theoretical description of biomolecules based on quantum mechan-

ical (QM) ab-initio approaches to accurately model electronic properties and

atomic interactions is computationally extremely demanding. Therefore, the

most common atomistic description of biomolecules is based on classical or

Newtonian force fields and simplifies the QM interactions coarsely into molec-

ular mechanics. Typical energy terms are divided into short ranged bonded

and long-ranged non-bonded interactions.

Bonded interactions are named by counting the involved number of atoms as

1−2 or bond, 1−3 or angle, and 1−4 or dihedral interactions. The 1−2 inter-

action is a harmonic potential VB = εB(x−x0)2 (bond constant εB, distance x
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Figure 1.1: Co-Evolutionary Analysis builds on the premise that a biomolecular 3d

structure leaves an evolutionary imprint on the sequences of a protein family or in

both protein families that form a complex, as a mutation at site i affects mutations

at the spatially adjacent sites j. Statistical analysis can therefore infer such pairs of

co-evolving residues, both intra-molecular (purple) or inter-molecular (red). Specific

functionally relevant residues (orange) are conserved across a protein family and will

not show co-evolutionary signals.
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of involved atoms 1, 2 and their equilibrium distance x0). The 1−3-interaction

is also harmonic VA = εA(θ − θ0)2 (angle constant εA, angle between bonds of

atoms (1,2) and (2,3), θ0 equilibrium angle). The 1− 4-interaction is provided

by VD =
∑

z=1,3 εz,D (1− cosn(φ− φ0)) (dihedral constant εz,D, φ the angle

or dihedral between the respective planes formed by atoms (1,2,3) and (2,3,4),

equilibrium dihedral θ0 and the multiplicity n).

In addition, there are typically two types of non-bonded interactions. The short-

ranged Lennard-Jones potential can be written as VLJ = εLJ

[(
σ
rij

)12
− 2

(
σ
rij

)6
]

(εLJ the potential strength, σ the equilibrium distance, rij inter-atomic dis-

tance of atoms i and j). Finally, the electrostatics term represents interactions

resulting from two point charges VES = εES
qiqj

4πε0εRrij
(εES potential strength, qi

point charge of atom i, ε0 electric constant, εR dielectric constant, rij distance

between charged atoms i and j).

The total sum of all terms for all atoms is the molecular mechanics poten-

tial or force field. Some common force fields for biomolecular simulations are

AMBER[12] or CHARMM[8]. Given the importance of water to biomolecules

[35] and their interactions[27, 2], the solvent interactions have to be modeled as

well, either explicitly or implicitly [76, 22, 84, 59, 16, 13, 14, 30]. In structure

prediction, the global minimum of the potential should represent the native

fold and can be identified by, e.g., stochastic global optimization methods such

as simulated annealing and its variants for this task[9, 37, 65, 64, 66, 18].
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1.4. Statistical Inference of Coevolution

1.4.1. Limitations of local statistical inference

Protein interactions are the main actuator in biological signaling. Proteins

need to interact specifically to prevent unwanted cross-talk, interact sufficiently

strong to accommodate transfer of signaling molecules, and, at the same time,

interact sufficiently weak or transient to allow disassociation after functional

interactions. The main elements of protein interactions is the interaction inter-

face being stabilized by the properties of the involved amino acids. If specific

amino acids enable chemical functions (e.g. Kinases), these amino acids tend

to be conserved in evolution. All other involved amino acids can more freely

mutate in evolution but are still constraint by the need to maintain the overall

interacting interface.

These general considerations led to the development of statistical methods to

infer such mutational constraints, e.g. by scoring substitution patterns [31] or

comparing single fi(α) and pairwise occurring amino acid frequencies fij(α, β)

(α, β ∈ {1, . . . , q}) are typically the q naturally occurring amino acids plus

gap), [47, 42, 80]. One can calculate the fi, fij out of a multiple sequence

alignment (MSA) for a protein family or out of a joint MSA for a complex.

The sequences of such a protein family in a MSA are assumed undergoing

selective pressure. Commonly, Mutual Information is then used to quantify

co-evolution of sites i, j

MIij =
∑

α,β∈{1,...,q}

fij (α, β) ln

(
fij (α, β)

fi (α) fj (β)

)
(1.1)
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with the the sum running over all the possible amino acids. Here, high values

of MI correlate with biological function, but MI is plagued by high numbers of

false positive signals when interpreted, e.g., as spatial adjacency when above

a threshold. How can be improve this statistical analysis?

1.4.2. Direct Coupling Analysis- a Potts model

based on multiple sequence alignments

Direct Coupling Analysis [78, 68, 50] frames co-evolution as an inverse problem

based on statistical mechanics (cf. Fig 1.4.2. As above, the sequences in a

protein family as found in the MSA are assumed undergoing selective pressure.

Thus, a MSA should allow inferring the evolutionary dynamics based on the

the marginal distributions of single sites and pairs by, e.g., a maximum-entropy

approach to derive a Boltzmann-type distribution.

[q] = {i ∈ N|1 ≤ i ≤ q} is a q-letter alphabet of amino acids (or nucleic

acids for RNA) plus the gap position in a MSA. L-tuples formed from [q]

provide protein sequences σ = {σν}Lν=1, where σν is the amino acid in position

ν for a protein of length L. An MSA is viewed as a random sampling of possible

sequencess σ of the entire protein family Γ (i.e. Γ are the set of possible L-tuples

formed from [q]) and we want to infer the probability distribution. According

to the maximum-entropy principle, the distribution P that best represents the

data given prior knowledge maximizes the entropy function

S(P ) = −
∑
σ∈Γ

P (σ) lnP (σ) (1.2)

8



Figure 1.2: Once the inverse problem is solved, the DCA Hamiltonian can be

interpreted. In the context of structure prediction, typically the coupling parameters

eij are projected on a scalar such as the direction interaction score and high values

interpreted as spatial adjacency of the involved residues i and j. The entire

Hamiltonian can also be interpreted as a fitness landscape.
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The distribution maximizing the entropy is of the form

P (σ) =
1

Z
exp {−H(σ)} (1.3)

with the Hamiltonian function H(σ) = −
∑N

k=1 λkgk(σ), the Lagrange multi-

pliers {λk}Nk=1, and the partition function Z =
∑

σ e
−H(σ). We now need to

find the Lagrange multipliers best describing our data.

In DCA[78, 68, 50], we assume the pair-wise coupling i, j (e.g. stabilizing

interactions) and single-site i behavior (e.g. active sites) to be reflected in the

MSA:

〈δσi,α〉 =
∑
σ

P (σ|σi = α) (1.4)

〈
δσi,αδσj ,β

〉
=
∑
σ

P (σ|σi = α, σj = β) (1.5)

Ignoring numerical stability[78, 68, 50], marginal probabilities can be estimated

from the MSA by direct frequency counts of the single sites fi(α) and pairs

fij(α, β) and we arrive at the Hamiltonian:

H(σ) = −
∑

1≤i≤L
hi(σi)−

∑
1≤i<j≤L

eij(σi, σj) (1.6)

The matrix e of pairwise interactions is called the couplings matrix and the

single site components hi coupling. In statistical physics, this mathematical

description is called a Potts model, a generalized model of the Ising model. The

Potts model has
(
N
2

)
q2 + Nq inferred parameters, or

(
N
2

)
(q − 1)2 + N(q − 1)

non-redundant constrains upon normalization, i.e. couplings and local fields

are not uniquely defined. A common constraint is to impose gauge-fixation to

reduce the parameter space.
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1.5. Solving the Inverse Potts Model

Inferring the Hamiltonian from available sequence data requires solving an in-

verse problem, which was for biological sequence data first solved by Weigt and

co-workers[78, 68] by DCA. Due to the finite nature of any MSA and the fact,

that sequences in the MSA are not a random subsample of possible sequences

1, we can only approximately solve the inverse problem. It is also common to

improve numerical robustness by including pseudo-count corrections λ in the

restrictions of the marginals[78, 68]:

fν(α) =
1

λq +M

[
λ+

M∑
a=1

δσν ,α

]
(1.7)

fνξ(α, β) =
1

λq +M

[
λ

q
+

M∑
a=1

δσν ,αδσξ,β

]
(1.8)

(M is the size in sequences of the MSA) with minimal impact for large sample

size (M >> λq), sampling re-weighting [50] or other refinements of input data.

Several Approaches have been developed to solve the inverse statistical prob-

lem. The original Message-Passing DCA [78, 68] is a based on susceptibility

propagation and computationally quite expensive as it scales as O(L4q2). An

improvement was Mean-Field DCA (mfDCA) [50], which considerably low-

ered computational cost. In mfDCA the DCA Hamiltonian is decomposed

into a non-interacting part H0(σ) = −
∑

1≤i≤L hi(σi) and a couplings sec-

tor H(σ) = H0(σ) + ∆H(σ). Then, one introduces a trial non-interacting

1Databases tend to focus on sequences which are either experimentally easy to access

as they are from common bacteria or are of particular medical relevance. This leads to

phylogenetic and other biases in the sequence data.
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Hamiltonian H0(σ) + 〈∆H(σ)〉0 (here 〈X〉 stands for the average of X over

the canonical ensemble defined by the non-interacting part). Due to the Bo-

goliubov inequality F ≤ F0 + 〈∆H(σ)〉0 mfDCA optimizes the local fields to

ensure that the trial non-interacting model approximates the closest free energy

to the actual system. In the first mfDCA [50] Ursell functions are calculated

from the empirical frequencies and the corresponding matrix are inverted to

recovered the mean-field couplings.

While mfDCA is computationally quite efficient, a subsequent approach is

based on Pseudo-Likelihood Maximization (plmDCA)[6, 3]. To infer the val-

ues of couplings and of single site fields, the likelihood is substituted by the

product of conditional probabilities of observing the variable σni given the en-

semble of all the others (σn1 ...σ
n
i−1σ

n
i+1...σ

n
L). In plmDCA, a maximization step

proves the computational bottleneck and different gradient descend algorithms

are able to tackle this challenge. The most common one is the limited-memory

BFGS [11] used as default by plm-DCA implementations [79, 69, 41, 26, 82].

The large redundancy of parameters is solved by regularization [4]. A l1-block

regularization has been firstly employed in [5]. Many plm-DCA implementa-

tion use a l2-regularization by adding l2 = λh
∑N

i=1‖hi‖2+λJ
∑

1≤i≤j≤N‖eij‖2

to the pseudo-likehood, which leads to a Ising-type gauge [26].

Finally, one typically takes the coupling matrices eij and condenses them into

a scalar for scoring, e.g. by the Frobenius norm [25, 69, 79, 41]:

FNij = ‖eij‖=

√√√√ q∑
k,l=1

eij(α, β)2 (1.9)

often combined with a Averaged Product Correction [24] APCij = FNij −∑
i FNij

∑
j FNij∑

i

∑
j FNij

. The highest scores pairs of residues are then assumed to be
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spatially adjacent. Alternative scores such as Direct Information [78] exist.

Typically, for proteins plmDCA provides higher accuracies than mfDCA at el-

evated computational costs, while for RNA both plmDCA and mfDCA provide

similar results[60, 61].

1.6. Contact guided protein and RNA

structure prediction

Experimental measurement of protein and RNA 3d structures is often quite in-

volved while the sequence databases grow exponentially and can be exploited

by DCA. Here, one typically condenses the coupling matrices into a scalar

Sij(see above) and rankes or sorts them by value. These top ranked site-pairs

are then inserted as distance constraints into molecular modeling tools to pre-

dict protein [68, 48, 71, 39, 17, 51, 72] or RNA [20, 79, 61] systems. Specific

examples include all-atom models of globular proteins [48], membrane proteins

[39, 56], proteins with multiple conformations [17, 39, 51], structural pattern in

disordered proteins [74], or combined with nuclear magnetic resonance (NMR)

data [72]. For RNA, DCA has improved both secondary and tertiary structure

prediction [20], which was quickly corroborated [79].

But what are the challenges? One big challenge is building a high quality

MSA, as one needs to account for phylogenetic bias, non-random sampling of

sequence space, etc. Also, while the to scoring contacts tend to be correct or

true positive (TP), lower scoring contacts are more likely to be false negatives

and only a fraction of all contacts can be predicted with good signal-to-noise

ratios. Typically, the top L or 2L contacts are used. Lastly, the integration of
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predicted contacts into molecular modeling software is not unique and needs

to be error tolerant. Also, the used modeling force fields are not perfect, i.e.

the lowest energy might not be the native state of a protein.

Intermonomer interaction and signaling

Residue pair coevolution occurs also at inter-protein interfaces. Here, one typ-

ically performs a DCA analysis of possible contacts between the interacting

proteins. These contacts are then used as constraints in docking the inter-

acting proteins. The abundance of sequence data makes two-component sig-

nal transduction system (TCS) a common target of coevolutionary analysis

[78, 68, 50, 15, 7]. In fact, the first application of DCA was a blind prediction

of a specific TCS [68, 67]. As predicting TCS exemplifies the general approach

for predicting protein complexes nicely, I will quickly go over the crucial steps

in the last study. TCS are ubiquitous signal transduction systems in bacteria,

hence even in 2009 there were many sequences available. To study this het-

erodimer, it was necessary to build a concatenated MSA data of the interacting

protein partners. Due to the possible presence of paralogs, the identification

of the correct non-crosstalking interacting partner is challenging. Luckily for

TCS, the two interacting partners sensor histidine kinase (HK) and response

regulator (RR), can be found adjacently within the same operon- which greatly

simplifies building the common MSA. The HK receives an extracellular signal

which affect its autophosphorylation rate. The chemical signal, i.e. the phos-

phoryl group, is then transducted between a highly conserved His of the HK

and an Asp of the RR. This conserved His-Asp pair is invisible to DCA due

to its inmutatbility but provides an additional spatial constraint for docking

14



HK and RR. Taking the DCA contacts at the HK-RR interfaces and this ad-

ditional contacts, is was possible to blindly predict the TCS complex within

about 3.5Å of an independently measured crystal structure[68].

For other classes of protein complex there are other challenges. The difficulty

to build a joint MSA is greatly diminished for homodimeric complexes as a

protein interacts with itself. Here, the challenge is to distinguish between inter-

monomeric and intra-monomeric contacts, as it is unknown how co-evolving

contact pairs interact and could be formed within each monomer, between the

copies of the monomer or even both within and between. Also, contacts could

only be formed in additional conformations, e.g. in conformational transitions

or even in domain-swapping. One possibility to address this challenge is as-

suming that intra-monomeric contacts are not formed at the interface. Thus,

one can simply rank all contacts by their score and exclude all contacts already

formed in the (typically known) monomer. The remaining contacts can then be

formed at the interface [57, 23, 75]. A problem with this approach is the large

number of false positive contact predictions at the interface[75], which needs to

be addressed by the modeling tools. A large scale study of ≈ 2000 homodimers

[75] systematically identified several main results for homodimeric interfaces.

• Higher quality MSAs lead to significantly improved signal-to-noise ratios.

Large protein families from the database could contain sub-families with

different binding modes, strongly distorting the statistical analysis.

• Larger interacting surface regions are better detected by DCA. Smaller inter-

acting surface regions are more difficult to detect. This is not trivial, as one

could assume that smaller interacting surfaces have stronger co-evolutionary

signals.

• The majority of predicted false positive (FP) contacts in the monomeric
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structure are in fact true positive (TP) contacts of the homodimeric inter-

face. Most predicted contacts are thus formed intra, inter, or both supporting

the thesis of spatial adjacency contributing strongly to co-evolution.

1.7. Summary

Co-evolutionary analysis is a powerful toolkit to quantify evolutionary effects

on biomolecular structures. Physics-driven methods such as DCA can be di-

rectly integrated into molecular modeling tools to predict a large variety of

structures, ranging from globular proteins to complexes and RNA. Consider-

ing the ongoing growth of both sequence data and raw computational power,

these and similar methods based on machine learning will continue to impact

structural biology and complement advances in the experimental techniques.
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son, Alex Bridgland, et al. Improved protein structure prediction using

potentials from deep learning. Nature, 577(7792):706–710, 2020.

[71] Joanna I Su lkowska, Faruck Morcos, Martin Weigt, Terence Hwa, and
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