000916176 001__ 916176
000916176 005__ 20240313103119.0
000916176 0247_ $$2doi$$a10.1016/j.biosystems.2022.104813
000916176 0247_ $$2ISSN$$a0011-4014
000916176 0247_ $$2ISSN$$a0303-2647
000916176 0247_ $$2ISSN$$a1872-8324
000916176 0247_ $$2Handle$$a2128/33376
000916176 0247_ $$2pmid$$a36460172
000916176 0247_ $$2WOS$$aWOS:000899830200001
000916176 037__ $$aFZJ-2022-05996
000916176 041__ $$aEnglish
000916176 082__ $$a570
000916176 1001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b0$$eCorresponding author
000916176 245__ $$aEvaluating the statistical similarity of neural network activity and connectivity via eigenvector angles
000916176 260__ $$bElsevier Science$$c2023
000916176 3367_ $$2DRIVER$$aarticle
000916176 3367_ $$2DataCite$$aOutput Types/Journal article
000916176 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672837690_11195
000916176 3367_ $$2BibTeX$$aARTICLE
000916176 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916176 3367_ $$00$$2EndNote$$aJournal Article
000916176 520__ $$aNeural systems are networks, and strategic comparisons between multiple networks are a prevalent task in many research scenarios. In this study, we construct a statistical test for the comparison of matrices representing pairwise aspects of neural networks, in particular, the correlation between spiking activity and connectivity. The ”eigenangle test” quantifies the similarity of two matrices by the angles between their ranked eigenvectors. We calibrate the behavior of the test for use with correlation matrices using stochastic models of correlated spiking activity and demonstrate how it compares to classical two-sample tests, such as the Kolmogorov–Smirnov distance, in the sense that it is able to evaluate also structural aspects of pairwise measures. Furthermore, the principle of the eigenangle test can be applied to compare the similarity of adjacency matrices of certain types of networks. Thus, the approach can be used to quantitatively explore the relationship between connectivity and activity with the same metric. By applying the eigenangle test to the comparison of connectivity matrices and correlation matrices of a random balanced network model before and after a specific synaptic rewiring intervention, we gauge the influence of connectivity features on the correlated activity. Potential applications of the eigenangle test include simulation experiments, model validation, and data analysis.
000916176 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916176 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000916176 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000916176 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x3
000916176 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
000916176 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x5
000916176 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916176 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b1$$ufzj
000916176 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b2
000916176 770__ $$aSelected Papers from the 14th International Neural Coding Workshop, Seattle, Washington$$z0303-2647
000916176 773__ $$0PERI:(DE-600)1496359-0$$a10.1016/j.biosystems.2022.104813$$gVol. 223, p. 104813 -$$p104813$$tBiosystems$$v223$$x0011-4014$$y2023
000916176 8564_ $$uhttps://juser.fz-juelich.de/record/916176/files/1-s2.0-S0303264722001940-main.pdf$$yOpenAccess
000916176 8767_ $$d2023-05-17$$eHybrid-OA$$jZahlung erfolgt$$zUmbuchung
000916176 909CO $$ooai:juser.fz-juelich.de:916176$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000916176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b0$$kFZJ
000916176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b1$$kFZJ
000916176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b2$$kFZJ
000916176 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916176 9141_ $$y2023
000916176 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000916176 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000916176 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
000916176 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22
000916176 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
000916176 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916176 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916176 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
000916176 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOSYSTEMS : 2022$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000916176 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000916176 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000916176 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000916176 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000916176 9801_ $$aFullTexts
000916176 980__ $$ajournal
000916176 980__ $$aVDB
000916176 980__ $$aUNRESTRICTED
000916176 980__ $$aI:(DE-Juel1)INM-6-20090406
000916176 980__ $$aI:(DE-Juel1)IAS-6-20130828
000916176 980__ $$aI:(DE-Juel1)INM-10-20170113
000916176 980__ $$aAPC
000916176 981__ $$aI:(DE-Juel1)IAS-6-20130828