000916178 001__ 916178 000916178 005__ 20240711114043.0 000916178 0247_ $$2Handle$$a2128/33236 000916178 037__ $$aFZJ-2022-05998 000916178 041__ $$aEnglish 000916178 1001_ $$0P:(DE-Juel1)178721$$aGanesh, Vishnu$$b0$$eCorresponding author$$ufzj 000916178 1112_ $$a32nd Symposium on Fusion Technology$$cDubrovnik$$d2022-09-18 - 2022-09-24$$gSOFT 2022$$wCroatia 000916178 245__ $$aHigh heat flux testing results of various W-FGM-steel joints 000916178 260__ $$c2022 000916178 3367_ $$033$$2EndNote$$aConference Paper 000916178 3367_ $$2BibTeX$$aINPROCEEDINGS 000916178 3367_ $$2DRIVER$$aconferenceObject 000916178 3367_ $$2ORCID$$aCONFERENCE_POSTER 000916178 3367_ $$2DataCite$$aOutput Types/Conference Poster 000916178 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1671622666_30681$$xAfter Call 000916178 520__ $$aFor a future commercial fusion reactor the First Wall of the breeding blanket will require a joint between the structural steel and the plasma facing material tungsten. However, the difference in the coefficient of thermal expansion (CTE) between them results in thermal stresses at their interface during operation and this could result in premature failure of the joint. A functionally graded material (FGM), as an interlayer between tungsten and steel could reduce these stresses. In this study two processes, atmospheric plasma spraying (APS) and spark plasma sintering (SPS), are utilized to manufacture four different kinds of W-FGM-steel stacks: the first two include FGMs prepared by APS; W-V-75W-50W-25W-steel and W-50W-25W-steel, the other two include FGMs made by SPS; W-75W-50W-25W-steel and W-50W-25W-steel. This investigates: i) the influence of an additional V-interlayer; ii) the comparison of APS- and SPS-FGMs; and iii) the influence of FGM composition and thickness. In all these W-FGM-steel stacks, with a surface area of 12 mm x 12 mm, the thickness of each FGM sublayer (75W, 50W, 25W) is about 0.5 mm, whereas the bulk-W and bulk-steel are 3 mm thick. A sample of direct diffusion bonded W-steel joint is used as a reference. A high heat flux benchmark test was performed to investigate and compare the potential of the different joining technologies. For this, the stacks were soldered on a copper cooling module and exposed to high stationary loads at the JUDITH-2 facility. At each power level of 1 MW/m2, 2 MW/m2, 3 MW/m2 and 4 MW/m2 the samples were subjected to a component screening cycle to determine the component quality followed by up to 200 on/off cycles (30/30 s). By monitoring the surface temperature using an IR camera, the cooling capabilities of each sample and any local overheating as indication of bond failure can be determined. 000916178 536__ $$0G:(DE-HGF)POF4-133$$a133 - Technologien und Materialien für die Fusion (POF4-133)$$cPOF4-133$$fPOF IV$$x0 000916178 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0 000916178 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x1 000916178 7001_ $$0P:(DE-Juel1)171293$$aDorow-Gerspach, Daniel$$b1$$ufzj 000916178 7001_ $$0P:(DE-HGF)0$$aMatejicek, Jiri$$b2 000916178 7001_ $$0P:(DE-HGF)0$$aVilemova, Monika$$b3 000916178 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4$$ufzj 000916178 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b5$$ufzj 000916178 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b6$$ufzj 000916178 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, Gerald$$b7$$ufzj 000916178 7001_ $$0P:(DE-HGF)0$$aTheisen, Werner$$b8 000916178 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b9$$ufzj 000916178 8564_ $$uhttps://juser.fz-juelich.de/record/916178/files/Poster_A0.pdf$$yOpenAccess 000916178 909CO $$ooai:juser.fz-juelich.de:916178$$pdriver$$pVDB$$popen_access$$popenaire 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178721$$aForschungszentrum Jülich$$b0$$kFZJ 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171293$$aForschungszentrum Jülich$$b1$$kFZJ 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b5$$kFZJ 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b6$$kFZJ 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b7$$kFZJ 000916178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b9$$kFZJ 000916178 9131_ $$0G:(DE-HGF)POF4-133$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vTechnologien und Materialien für die Fusion$$x0 000916178 9141_ $$y2022 000916178 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000916178 920__ $$lyes 000916178 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000916178 9801_ $$aFullTexts 000916178 980__ $$aposter 000916178 980__ $$aVDB 000916178 980__ $$aUNRESTRICTED 000916178 980__ $$aI:(DE-Juel1)IEK-4-20101013 000916178 981__ $$aI:(DE-Juel1)IFN-1-20101013