000916198 001__ 916198
000916198 005__ 20240313103119.0
000916198 0247_ $$2Handle$$a2128/33423
000916198 037__ $$aFZJ-2022-05999
000916198 041__ $$aEnglish
000916198 1001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b0$$eCorresponding author$$ufzj
000916198 1112_ $$aSfN Conference$$cSan Diego$$d2022-11-12 - 2022-11-16$$gSFN2022$$wUSA
000916198 245__ $$aMultiplexing neurons and multiple overlapping cell assemblies active during motor behavior
000916198 260__ $$c2022
000916198 3367_ $$033$$2EndNote$$aConference Paper
000916198 3367_ $$2BibTeX$$aINPROCEEDINGS
000916198 3367_ $$2DRIVER$$aconferenceObject
000916198 3367_ $$2ORCID$$aCONFERENCE_POSTER
000916198 3367_ $$2DataCite$$aOutput Types/Conference Poster
000916198 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1673959389_26809$$xAfter Call
000916198 520__ $$aThe cell assembly hypothesis [1] postulates that neurons coordinate their activity through the formation of repetitive co-activation of groups, called cellassemblies. We assume that spatio-temporal spike patterns (STPs) occur as an expression of active neuronal assemblies, at the resolution of a fewmilliseconds.In order to test this hypothesis, we used the SPADE method [2,3,4,5], which detects significant STPs in parallel spike trains. We analyzed experimental datarecorded by a 10x10 electrode Utah array in the pre-/motor cortex of macaque monkeys performing a reach-to-grasp task [6,7]. The task comprised four differenttrial types of grasping and pulling an object by combining two grip types and two force levels.We find significant STPs in 19/20 recording sessions (of 15min) from different days. They occur in all phases of the behavior and across all trial types. Their sizeranges between 2 and 6 neurons, with a maximal temporal extent of 60ms. The STPs show a high behavioral specificity, suggesting that different cellassemblies are active in the context of different behaviors. Moreover, we observed that pattern spikes are only a small fraction of the total recorded spikingactivity, which may be explained by downsampling due to the recording. A surprising finding is that STPs overlap on different levels: 1) the same neuron may beinvolved in a different STP during another behavioral epoch during an individual session, which may indicate overlapping assemblies; 2) in 85% of the sessionswith patterns at least one neuron participates in many patterns, which may be interpreted as a hub neuron linking assemblies; 3) even individual spikes take partin more than one STP.Concluding, our results indicate that STPs occur frequently in parallel spike trains. Quantitative analysis of their properties suggests that STPs are functionallyrelated to behavior and specific to it, and may be an indication of the presence of assemblies being activated during the task. The assemblies may include tensor even hundreds of neurons, however, given the sub-sampling of our experimental setting, we may capture their activation in the form of patterns composed ofa few neurons.References:[1] Hebb, D. O. (1949). John Wiley & Sons[2] Torre et al (2016) J Neurosci.[3] Quaglio et al. (2017). Front Comp Neurosci.[4] Stella, Quaglio et al.(2019). Biosystems[5] Stella, Bouss et al. (2022). eNeuro[6] Brochier et al. (2018). Scientific data[7] Riehle et al. (2013). Front. Neural Circuits
000916198 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916198 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x1
000916198 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000916198 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000916198 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x4
000916198 7001_ $$0P:(DE-Juel1)178725$$aBouss, Peter$$b1$$ufzj
000916198 7001_ $$0P:(DE-Juel1)172768$$aPalm, Günther$$b2$$ufzj
000916198 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b3$$ufzj
000916198 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b4
000916198 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5$$ufzj
000916198 8564_ $$uhttps://juser.fz-juelich.de/record/916198/files/poster_Stella_SfN_2022.pdf$$yOpenAccess
000916198 909CO $$ooai:juser.fz-juelich.de:916198$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000916198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b0$$kFZJ
000916198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178725$$aForschungszentrum Jülich$$b1$$kFZJ
000916198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172768$$aForschungszentrum Jülich$$b2$$kFZJ
000916198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b3$$kFZJ
000916198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
000916198 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916198 9141_ $$y2022
000916198 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916198 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000916198 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000916198 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000916198 9801_ $$aFullTexts
000916198 980__ $$aposter
000916198 980__ $$aVDB
000916198 980__ $$aUNRESTRICTED
000916198 980__ $$aI:(DE-Juel1)INM-6-20090406
000916198 980__ $$aI:(DE-Juel1)IAS-6-20130828
000916198 980__ $$aI:(DE-Juel1)INM-10-20170113
000916198 981__ $$aI:(DE-Juel1)IAS-6-20130828