000916199 001__ 916199
000916199 005__ 20240313095006.0
000916199 037__ $$aFZJ-2022-06000
000916199 1001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b0$$eCorresponding author$$ufzj
000916199 1112_ $$aVisit to University of Boston$$cBoston$$d2022-11-04 - 2022-11-04$$wUSA
000916199 245__ $$aDetection of spatio-temporal spike patterns and multiple overlapping cell assemblies during motor behavior$$f2022-11-04 -
000916199 260__ $$c2022
000916199 3367_ $$033$$2EndNote$$aConference Paper
000916199 3367_ $$2DataCite$$aOther
000916199 3367_ $$2BibTeX$$aINPROCEEDINGS
000916199 3367_ $$2ORCID$$aLECTURE_SPEECH
000916199 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1673261585_17708$$xOutreach
000916199 3367_ $$2DINI$$aOther
000916199 520__ $$aThe cell assembly hypothesis postulates that information processing in the brain entails therepetitive co-activation of groups of neurons [1]. The activation of such assemblies wouldlead to spatio-temporal spike patterns (STPs) at the resolution of a few milliseconds. In orderto test the cell assembly hypothesis, we searched for significant STPs in parallel spike trains,and developed the SPADE method [2,3]. Using SPADE, we analyzed experimental data fromthe motor cortex (M1/PMd) of macaque monkeys (Macaca mulatta) performing areach-to-grasp task [4] and found an abundance of STPs. Quantitative analysis showed thatSTPs are functionally related to behavior, which suggests the presence of assembliesactivated during the task.References:[1] Hebb, D. O. (1949). John Wiley & Sons[2] Stella et al. (2019). Biosystems, 185, 104022. [doi: 10.1016/j.biosystems.2019.104022][3] Stella et al. (2022). eNeuro [doi: 10.1523/ENEURO.0505-21.2022][4] Brochier et al. (2018). Scientific data 5.1: 1-23. [doi: 10.12751/g-node.f83565]
000916199 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916199 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000916199 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000916199 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x3
000916199 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x4
000916199 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b1$$ufzj
000916199 909CO $$ooai:juser.fz-juelich.de:916199$$pec_fundedresources$$pVDB$$popenaire
000916199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b0$$kFZJ
000916199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b1$$kFZJ
000916199 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916199 9141_ $$y2022
000916199 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000916199 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000916199 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000916199 980__ $$atalk
000916199 980__ $$aVDB
000916199 980__ $$aI:(DE-Juel1)INM-6-20090406
000916199 980__ $$aI:(DE-Juel1)IAS-6-20130828
000916199 980__ $$aI:(DE-Juel1)INM-10-20170113
000916199 980__ $$aUNRESTRICTED
000916199 981__ $$aI:(DE-Juel1)IAS-6-20130828