001     916199
005     20240313095006.0
037 _ _ |a FZJ-2022-06000
100 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Visit to University of Boston
|c Boston
|d 2022-11-04 - 2022-11-04
|w USA
245 _ _ |a Detection of spatio-temporal spike patterns and multiple overlapping cell assemblies during motor behavior
|f 2022-11-04 -
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1673261585_17708
|2 PUB:(DE-HGF)
|x Outreach
336 7 _ |a Other
|2 DINI
520 _ _ |a The cell assembly hypothesis postulates that information processing in the brain entails therepetitive co-activation of groups of neurons [1]. The activation of such assemblies wouldlead to spatio-temporal spike patterns (STPs) at the resolution of a few milliseconds. In orderto test the cell assembly hypothesis, we searched for significant STPs in parallel spike trains,and developed the SPADE method [2,3]. Using SPADE, we analyzed experimental data fromthe motor cortex (M1/PMd) of macaque monkeys (Macaca mulatta) performing areach-to-grasp task [4] and found an abundance of STPs. Quantitative analysis showed thatSTPs are functionally related to behavior, which suggests the presence of assembliesactivated during the task.References:[1] Hebb, D. O. (1949). John Wiley & Sons[2] Stella et al. (2019). Biosystems, 185, 104022. [doi: 10.1016/j.biosystems.2019.104022][3] Stella et al. (2022). eNeuro [doi: 10.1523/ENEURO.0505-21.2022][4] Brochier et al. (2018). Scientific data 5.1: 1-23. [doi: 10.12751/g-node.f83565]
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|x 0
|f POF IV
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 1
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 2
|f H2020-SGA-FETFLAG-HBP-2019
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 3
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 4
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 1
|u fzj
909 C O |o oai:juser.fz-juelich.de:916199
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21