001     916205
005     20230113085358.0
024 7 _ |a 10.1038/s41524-022-00927-z
|2 doi
024 7 _ |a 2128/33221
|2 Handle
024 7 _ |a WOS:000882382700001
|2 WOS
037 _ _ |a FZJ-2022-06006
082 _ _ |a 004
100 1 _ |a Dai, Yu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Simultaneous enhancement in electrical conductivity and Seebeck coefficient by single- to double-valley transition in a Dirac-like band
260 _ _ |a London
|c 2022
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671611142_28423
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a SnTe possesses a single- to double-valley transition in the conduction band minimum when a compressive strain is applied. Through a tight-binding analysis, it is shown that the variation of the band structure is attributed to the strain-induced delocalization of both the Sn-5s orbitals and Te-5p orbitals with different angular momenta. This effect can largely increase the electron density of states near the band edge and thus keep the Fermi level of the compressed SnTe closer to it, where the electrons have lower scattering rates. The strain-induced double valleys lead to simultaneous increases in the electrical conductivity and the Seebeck coefficient and thereby nearly four times the enhancement of the power factor at the doping concentration of 5×1019 cm–3. This work suggests a feasible concept that can be employed to promote the power factor of a Dirac semiconductor via manipulating the valley degeneracy in the conduction band minimum.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhou, Wenjiang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kim, Hyun-Jung
|0 P:(DE-Juel1)180856
|b 2
|u fzj
700 1 _ |a Song, Qichen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Qian, Xin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Te-Huan
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Yang, Ronggui
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1038/s41524-022-00927-z
|g Vol. 8, no. 1, p. 234
|0 PERI:(DE-600)2843287-3
|n 1
|p 234
|t npj computational materials
|v 8
|y 2022
|x 2057-3960
856 4 _ |u https://juser.fz-juelich.de/record/916205/files/s41524-022-00927-z.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916205
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180856
910 1 _ |a Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ COMPUT MATER : 2021
|d 2022-11-11
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NPJ COMPUT MATER : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:27:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:27:51Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:27:51Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21