000916212 001__ 916212
000916212 005__ 20221222131659.0
000916212 0247_ $$2arXiv$$aarXiv:2212.07854
000916212 0247_ $$2Handle$$a2128/33243
000916212 037__ $$aFZJ-2022-06013
000916212 088__ $$2arXiv$$aarXiv:2212.07854
000916212 1001_ $$0P:(DE-HGF)0$$aWitt, Arthur$$b0$$eCorresponding author
000916212 245__ $$aTactile Network Resource Allocation enabled by Quantum Annealing based on ILP Modeling
000916212 260__ $$c2022
000916212 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1671630912_4311
000916212 3367_ $$2ORCID$$aWORKING_PAPER
000916212 3367_ $$028$$2EndNote$$aElectronic Article
000916212 3367_ $$2DRIVER$$apreprint
000916212 3367_ $$2BibTeX$$aARTICLE
000916212 3367_ $$2DataCite$$aOutput Types/Working Paper
000916212 500__ $$a8 pages, 8 figures. Submitted to 'International Conference on the Design of Reliable Communication Networks (DRCN) 2023'. The data of the work are available on https://jugit.fz-juelich.de/qnet-public/home/
000916212 520__ $$aAgile networks with fast adaptation and reconfiguration capabilities are required for sustainable provisioning of high-quality services with high availability. We propose a new methodical framework for short-time network control based on quantum computing (QC) and integer linear program (ILP) models, which has the potential of realizing a real-time network automation. Finally, we study the approach's feasibility with the state-of-the-art quantum annealer D-Wave Advantage 5.2 in case of an example network and provide scaling estimations for larger networks. We embed network problems in quadratic unconstrained binary optimization (QUBO) form for networks of up to 6 nodes. We further find annealing parameters that obtain feasible solutions that are close to a reference solution obtained by classical ILP-solver. We estimate, that a real-sized network with 12 to 16 nodes require a quantum annealing (QA) hardware with at least 50000 qubits or more.
000916212 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000916212 588__ $$aDataset connected to arXivarXiv
000916212 7001_ $$0P:(DE-Juel1)165911$$aKörber, Christopher$$b1
000916212 7001_ $$0P:(DE-HGF)0$$aKirstädter, Andreas$$b2
000916212 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b3$$ufzj
000916212 8564_ $$uhttps://juser.fz-juelich.de/record/916212/files/2212.07854.pdf$$yOpenAccess
000916212 909CO $$ooai:juser.fz-juelich.de:916212$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000916212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b3$$kFZJ
000916212 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000916212 9141_ $$y2022
000916212 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916212 920__ $$lno
000916212 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000916212 980__ $$apreprint
000916212 980__ $$aVDB
000916212 980__ $$aUNRESTRICTED
000916212 980__ $$aI:(DE-Juel1)IAS-4-20090406
000916212 9801_ $$aFullTexts