001     916212
005     20221222131659.0
024 7 _ |a arXiv:2212.07854
|2 arXiv
024 7 _ |a 2128/33243
|2 Handle
037 _ _ |a FZJ-2022-06013
088 _ _ |a arXiv:2212.07854
|2 arXiv
100 1 _ |a Witt, Arthur
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Tactile Network Resource Allocation enabled by Quantum Annealing based on ILP Modeling
260 _ _ |c 2022
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1671630912_4311
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 8 pages, 8 figures. Submitted to 'International Conference on the Design of Reliable Communication Networks (DRCN) 2023'. The data of the work are available on https://jugit.fz-juelich.de/qnet-public/home/
520 _ _ |a Agile networks with fast adaptation and reconfiguration capabilities are required for sustainable provisioning of high-quality services with high availability. We propose a new methodical framework for short-time network control based on quantum computing (QC) and integer linear program (ILP) models, which has the potential of realizing a real-time network automation. Finally, we study the approach's feasibility with the state-of-the-art quantum annealer D-Wave Advantage 5.2 in case of an example network and provide scaling estimations for larger networks. We embed network problems in quadratic unconstrained binary optimization (QUBO) form for networks of up to 6 nodes. We further find annealing parameters that obtain feasible solutions that are close to a reference solution obtained by classical ILP-solver. We estimate, that a real-sized network with 12 to 16 nodes require a quantum annealing (QA) hardware with at least 50000 qubits or more.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Körber, Christopher
|0 P:(DE-Juel1)165911
|b 1
700 1 _ |a Kirstädter, Andreas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Luu, Tom
|0 P:(DE-Juel1)159481
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/916212/files/2212.07854.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916212
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159481
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21