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Abstract—Agile networks with fast adaptation and reconfig-
uration capabilities are required for sustainable provisioning of
high-quality services with high availability. We propose a new
methodical framework for short-time network control based on
quantum computing (QC) and integer linear program (ILP)
models, which has the potential of realizing a real-time network
automation. Finally, we study the approach’s feasibility with the
state-of-the-art quantum annealer D-Wave Advantage™ 5.2 in
case of an example network and provide scaling estimations
for larger networks. We embed network problems in quadratic
unconstrained binary optimization (QUBO) form for networks of
up to 6 nodes. We further find annealing parameters that obtain
feasible solutions that are close to a reference solution obtained
by classical ILP-solver. We estimate a real-sized network with 12
to 16 nodes require a quantum annealer (QA) hardware with at
least 50 000 qubits or more.

Index Terms—integer linear program, quantum annealing,
network automation, optical networks, resource allocation

I. INTRODUCTION

A. Motivation

Optical wide-area networks are the backbone for public
communication systems like 5G mobile communication and
different variants of fixed-access networks. The transport of
internet protocol (IP) traffic requires a conversion from elec-
trical to optical signals and vice versa and is realized by
power-hungry transceivers within the optical networks. Be-
cause traffic volume changes over time, adapting the network
configuration to new demands is beneficial. The temporal
changes, on the one hand, follow a diurnal profile [6], [7]
and, on the other hand, fluctuate within seconds and sub-
seconds [8], [9]. Therefore, the economical adaptive operation
of networks requires fast control algorithms for dynamic re-
source allocation, traffic engineering and restoration. Typically,
heuristic methods are used for network reconfiguration [10],
[11].
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The underlying problem of network resource adaptation is
an optimization problem of integer variables under constraints.
This kind of problem can be formulated as an integer linear
program (ILP). Solving ILPs for network resource allocation
can be time consuming, especially if a detailed modeling of
the network architecture and operation strategies take place.
Therefore, an ILP-based network adaptation in short time
periods is difficult to achieve, cf. [5]. In a real network,
problems like these are often solved with heuristic or meta-
heuristic approaches, which allow for a fast solvability at the
expense of modeling accuracy and additional effort for the
design of the heuristic, cf. [10], [11].

Quantum hardware that leverages the superposition of quan-
tum bits allows performing massively parallel optimization
protocols and could possibly overcome the time constraints
for short time optimizations. Only through the recent tech-
nological progress has it become possible to map feasible
optimization problems on quantum hardware. In particular,
our work proposes a new ILP-based solution approach for the
aforementioned network problem that can be solved on a QA,
a form of quantum computing architecture. While solutions
obtained on a quantum hardware are not generally guaranteed
to be optimal, this problem is an ideal use case for such
algorithms as it is only required to obtain better solutions—
which can be verified within microseconds.

B. Objectives

We test the feasibility of solving network optimization
on quantum hardware. Specifically, we test the feasibility to
extract solutions of a non-trivial discrete optimization prob-
lem within short time scales. Because today’s networks are
controlled in a centralized way by software-defined network
(SDN), it is possible in principle to incoporate this quantum
framework in realistic network configuration setups for traffic
engineering and restoration.

We use the new D-Wave Advantage™ 5.2 quantum annealer
in Jülich for the evaluation of our network optimizing algo-
rithm. We illustrate the essential steps in the application of
the QA to the network problem, and discuss the discovered
challenges and restrictions of our approach. Our network
scaling study allows us to make quantitative statements related
to the feasibility of our approach and QA-related requirements
for solving real-world network problems.
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Fig. 1. Visualization of spin configuration in a 2D-lattice (flat material) which
is determined by the Ising model (1).

C. Organization of the Work

In Sec. II, we briefly explain the notion of a QA and how
an ILP is mapped to the quantum hardware. Furthermore,
we address potential constraints and sources of errors which
inform our optimization strategy. In Sec. III, we specify the
network problem and explicitly derive the formulation of the
resource allocation ILP in terms of the QA API. Sec. IV-B,
presents our strategy for solving the ILP on the annealer and
Sec. IV presents obtained results for the example network
topology as well as scaling estimations for larger networks,
which we conclude in Sec. V.

II. PRELIMINARIES

A. The Ising model

In physics, the Hamiltonian function is used to derive the
equations of motions of a classical system. The Hamiltonian
itself represents the total energy of the system. The classical
Ising model is described by the Hamiltonian function,

HIsing(s) =
∑
i

hisi +
∑
i>j

Ji,jsisj , (1)

where si = ±1 are spin projections in the z direction and hi
is an external magnetic field at site i. The coupling between
spins at sites i and j is given by Ji,j . This model describes
an array of spins in 2-D, as shown in Fig. 1, and provides a
simple representation of ferromagnetism that exhibits a second
order phase transition. From a QA perspective, it serves as an
objective function to be minimized.

B. Quantum Annealing

The quantum mechanical equivalent of a classical system
can be obtained by replacing canonical coordinates and mo-
menta with operators (cannonical quantization). As a conse-
quence, previously commuting expressions may now not be
commutable. In case of the Ising model, the spin variables
si are replaced by spin operators: the pauli matrices σ̂. The
D-Wave Advantage™ system starts initially with a transverse
Ising model. By the application of external magnetic fields,
the annealer adjusts the the time-dependent amplitudes of the
Hamiltonian operator in both the x, or transverse, direction
and z direction, respectively,

ĤQPU =
A(s)

2
Ĥinitial +

B(s)

2
Ĥproblem (2)

Ĥinitial =
∑
i

σ̂(i)
x (3)
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Fig. 2. Energy variation of A(s) and B(s) to perform the annealing within
the D-Wave Advantage™ 5.2 acc to (2). Energy values are normalized by the
Planck constant h = 6.62 ·10−34Joules based on the relation E = hf . The
anneal fraction s will be varied over time within the annealing duration to
perform either a standard, paused, quenched, reverse or individual annealing
schedule.

Ĥproblem =
∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂
(i)
z σ̂(j)

z . (4)

Here σx,z represent Pauli sigma matrices. Because the spin
projections in the x and z directions do not commute, this
system must be solved quantum mechanically and is therefore
also known as the quantum Ising model. The external fields
depend on time. Initially A(s) � B(s) at time t = 0
corresponding to an annealing fraction s = 0, but adiabatically
changes to B(s) � A(s) at some anneal time t = tf
corresponding to an annealing fraction s = 1, as shown
in Fig. 2. After time tf the system has annealed to purely
Ĥproblem, and since σ̂z has either ±1 expectation values, this
is identical to the classical Ising model in Eq. (1).

C. Solving ILPs on Quantum Annealer

A method for solving integer linear programs (ILPs) on
quantum annealers was published firstly in [1]. In the follow-
ing we shortly recap this method to point out the required
steps of this problem mapping strategy. The programming of
D-Wave’s quantum annealer requires the representation of the
problem as a QUBO problem for bit vectors ψ ∈ {0, 1}N

X2(ψ) = ψ>Qψ . (5)

The annealer aims at finding the optimal bit vector ψ which
minimizes the objective function X2.

In the first step, we have to specify an ILP formulation of an
optimization problem, e.g. the proposed network problem. The
further steps define how it is mapped to the QUBO formalism.

ILPs are defined by an objective function, a set of K
constraints and M integer variables xm ≥ 0, shortly denoted
as vector x ∈ NM . The objective function defines the opti-
mization target in the form

c>x→ min (6)

with the cost weights c> ∈ RM . The constraints are given in
the form of equalities or inequalities according to

Ax+ b ≤ 0 (7)

with constant values b ∈ RK and the matrix A that contains
the linear weights Ak,m ∈ RK,M for all constraints of the



ILP. Typically, for solving ILPs, the inequality constraints
are transformed to equality constraints by introducing integer
slack variables s ∈ NK as follows

Ax+ b ≤ 0⇔ Ax+ b+ s = 0 . (8)

Introducing a sufficiently large penalty factor p, the objec-
tive function and constraints can be combined to a quadratic
optimization of objective and penalty

X2(x, s) = c>x+ p ‖Ax+ b+ s‖2 → min . (9)

Given that the penalty term p is large enough, the combined
minimization of X2 in terms of x, s returns the optimal vector
x0 which minimizes X2 under the constraints.

To map the integer quadratic optimization problem to a
binary QUBO problem, we introduce the matrices Z such that

x = Zxψx, s = Zsψs . (10)

We thus find the QUBO problem of the form

X2(q) = c>Zxqx+p ‖AZxqx + b+Zsqs‖
2 → min . (11)

In terms of the matrix formulation required by the D-Wave
API, this becomes

X2(ψ) = ψ>Qψ + C (12)

with Q = p

[
Qxx Qxs

Qsx Qss

]
, C = p ‖b‖2

Qxx = Z>xA
>AZx + diag

{(
2b>A+

1

p
c>
)
Zx

}
Qxs = Q>sx = Z>xA

>Zs

Qss = Z>s Zs + 2diag
{
Z>s b

}
. (13)

Matrix Q is symmetric (Q> = Q), which is directly visible in
their definition (13). Further, it is used only in the form ψ>Qψ
to determine a energy value. This allows one to transform Q
to a triangular matrix QTriag = tril{Q}>+triu{Q}. Function
tril{·} selects the triangular part below the main diagonal of a
matrix, and triu{·} the upper triangular part inclusive the main
diagonal. As the constant C is independent of the solution
vector ψ, it does not affect the location of the minimum.

The Ising model wave function components σi are related
to components of the QUBO bit vectors ψ by a linear shift
σi = 2ψi − 1. Equating respective objective functions allows
to identify the mapping from QUBO matrix to the Ising
Hamiltonian in matrix form

ψ>Qψ = σ>Jσ+h>σ+g ⇒


J = 1

4Q0

h = 1
2q +

1
21
>Q0

g = 1
41
>Q01+ 1

21
>q

.

(14)
These equations were obtained by expressing QUBO vectors
as Ising vectors, defining the traceless part of the QUBO
Q0 = Q − diag{q} and q = diag−1{Q} (since J is
not allowed to have diagonal components), and using that
ψ2
i = ψi. Here diag{·} transforms a vector into a diagonal

matrix and diag−1{·} extracts the diagonal part of the matrix
as a vector. 1 is a vector where each component is one.

D. Embedding

A QUBO can be viewed as a weighted graph where nodes
correspond to qubits, edges represent the coupling of two
qubits, and the weight of edges the strength of the coupling.
Because the hardware topology may have a different con-
nectivity as required by the QUBO, several hardware qubits
must be chained together to form a single logical qubit (nodes
of the QUBO graph). Generally, problems which have small
chains while using the entire hardware are found to be more
optimal [12]. As such, finding valid embeddings is an essential
constraint for being able to solve a problem. This embedding
constraint is affected by the number of qubits present in the
formulation (i.e., dimension of the QUBO matrix) and the
density of the QUBO matrix (number and locations of non-
zero entries).

This pre-processing procedure, e.g. finding a valid hardware
embedding for the given problem, must be performed before
submitting problems to the annealer. Depending on the prob-
lem size, finding a valid embedding may take several hours on
a single CPU. However, since an embedding is a map from
QUBO nodes to hardware topology nodes, which does not
depend on the relative coupling strengths, it is possible to
export valid embeddings which are reusable for a larger set of
problems. Thus, the expensive part of finding an embedding
must be performed only once for a class of problems.

E. Sources of Errors and Statistics

In principle, optimal solutions of the QUBO problem are
automatically optimal solutions to the network ILP. However,
solutions returned by the QA may be non-optimal because of
errors during the annealing process. For example, depending
on the specification of the annealing schedule, non-adiabatic
transitions from the ground state to an excited state may occur
if the annealing happens too fast. Especially, if energy gaps
between excited and ground states are small.

If the annealing happens too slowly, temporal or thermal
decorrelation of qubits may occur so that qubits may freeze
in position independent of the problem Hamiltonian. On the
other hand, it may not be possible to set up the problem on the
hardware—even if a valid embedding was found. For example,
if qubit chains are too long, they potentially break such that
one solves a different problem. Or, since the magnetic fields
generated by the hardware are only manipulated with finite
precision, the resolution of the QUBO entries may exceed
the magnetic field precision. It is a priori not known if these
problems may occur during an annealing schedule. For a given
problem setup, one must therefore perform multiple annealing
schedules and post-process the results to identify valid solu-
tions. This procedure provides distributions of solutions with
varying degrees of quality.

III. RESOURCE ALLOCATION IN WIDE AREA NETWORKS

A. Problem Description

An optical network is typically composed of transceiving
terminals and optical cross connects (OXC) at the network
nodes and optical line systems at the edges (between nodes) of



the network. At the terminals, transponders are equipped for
transmission and reception of optical signals. This includes
the power-hungry conversion of signals from the electrical
to optical domain or the other way round. Optical line sys-
tems are composed of multiplexers for signal combining,
and a sequence of fiber spans and amplifiers to increase
the optical transmission reach. The combination of signals
inside a multiplexer is performed along the concept of dense
wavelength division multiplexing (DWDM), i.e., the fiber
bandwidth is divided into a finite number of channels with
50GHz bandwidth each. An optical channel can be identified
by its central wavelength and is assigned to an optical fiber
located at a specific network edge. An optical circuit enables
an unidirectional traffic flow in the optical domain. It consists
of a single optical channel or a subsequent sequence of optical
channels and is terminated with two transponders, one at the
source and one at the target node.

We will consider a network architecture that is restricted as
follows:
• Singe Rate System: All transponders operate at a fixed

bandwidth. Optical channels provide a signal data rate
of 100Gbit/s. An optical circuit is a sequence of optical
channels allocated at different network edges. It has the
same bandwidth as an optical channel and a maximal
optical reach of 1000 km. Optical circuits are terminated
by two transponders corresponding to transmitter and
receiver.

• Colorless Wavelength Assignment: Depending on the
required data rate one or more optical channels resp.
wavelengths are allocated. It is not required to select a
specific wavelength (e.g., for the provisioning of wave-
length continuity along a sequence of network edges) as
the OXCs, present at all nodes, provide a wavelength
conversion in the optical domain during the forwarding
process.

An essential part of the network operation is the on-demand
or regularly traffic engineering. This process considers:
• Traffic Routing: For realizing a traffic flow between two

nodes, a sequence of links resp. nodes, i.e. a transmission
path, has to be selected. Typically, the shortest path is
selected as it provides normally the shortest latency. How-
ever, considering alternative paths increases the amount
of combinations for possible traffic flow migrations and
could allow network resources to be used more efficiently.

• Resource Allocation: Establishing a transmission path
requires the activation of optical circuits which includes
the allocation of optical channels per traversed network
edge and transponders. We considered optical channels
that are not limited to massive over-provisioning of fibers.
The expensive transponders are limited per node and can
be used for transmission or reception.

The allocation of resources in wide-area networks can be
interpreted as a combinatorial problem: In a preparation phase,
a set of resources and traffic routes has to be defined. Then, the
network’s resource utilization can be optimized by choosing a

a

b

c

Fiber

Transmission Path

Optical Circuit

Fig. 3. Definition of transmission path and circuits. For data transport between
node a and c, two transmission paths are possible. The transmission path a–
b–c can be realized a) by a direct circuit a–b–c, that is bypassing node b
in the optical domain, or b) by the sequence of circuits (a–b, b–c), which
requires two additional transponders for signal conversion at node b.

subset that fulfils the conditions of a proper network operation.
These steps will be explained in detail in the following
Sec. III-B and III-C. Finally, we want to minimize the amount
of utilized optical circuits and implicitly the amount of active
transponders. This will lower the overall energy consumption
of the network.

B. Generation of Path and Circuit Variations

A traffic flow between two nodes u ∈ V and v ∈ V , also
named as unidirectional demand d for the disjunct node pair
(u, v) with u 6= v, requires resources in a network to be
realized. V is the set of all network nodes, and D the set of all
demands in the network. As depicted in Fig. 3, a transmission
path is defined by a sequence of nodes resp. edges of the
network graph, that provides a connectivity between the source
and target node of an unidirectional demand. The realization of
a transmission path is done by a sequence of optical circuits.

First of all, we generate a set of circuits C that includes all
direct circuits, i.e. circuits that traverse a single network edge,
and a finite number of alternatives for them if possible. We
must therefore consider the optical reach of a circuit and the
restrictions of its topology.

Based on a shortest path search, we can identify a set of one
or more loop-free paths Ld per demand d, that are listed by
their distance in ascending order. As a circuit can also transport
a combination of different traffic flows by migration, it might
be beneficial if some of the transmission paths are realized
by a sequence of rather short circuits, which increases the
flexibility for migration. Therefore, we compute a set Rd,l of
possible circuit realizations r ∈ Rd,l with circuits from Ctemp

for each transmission path l ∈ Ld. The first circuit realization
in Rd,l contains a pattern with the shortest possible circuits,
i.e. they traverse only a single edge of the network. The second
realization uses a pattern with a minimal amount of circuits,
followed by some intermediate circuit pattern. For simplicity
we will define the union set Td, where td ∈ Td are all circuit
realization variants for traffic flow d, and the total union set
T according to

Td =
⋃
l∈Ld

Rd,l and T =
⋃
d∈D

Td. (15)

In the case that not all circuits of C are used in T , we delete
the not required circuits from set C.



C. ILP Form

ILPs for resource allocation and service provisioning in
wide area networks are often used as a reference method pro-
viding exact solutions for comparison with newly developed
heuristic or meta-heuristic algorithms. Sometimes they are also
used to study the possible benefit of new network operation
strategies. Some examples are given in [2], [4] where the
reduction of over-provisioned quality of services in networks
was studied.

To study the applicability of solving a network resource
allocation problem on quantum annealers we define the fol-
lowing terms based on [2], whereas the traffic volume hd of
a demand d is varying over time. Nevertheless, for the ILP
it is considered as a constant. The variations over time are
considered by frequently solving the ILP with updated values
of hd.

Variables:

• gtd ∈ {0, 1}: path selector, i.e., gtd equals 1 if a
transmission path for demand d is realized by circuit
configuration td ∈ Td.

• wc ∈ N: the number of active, parallel circuits on circuit
path c.

Constants:

• ξ ∈ R: the data rate of a single optical circuit.
• ηv ∈ N: the amount of transceivers installed at node v.
• ρc,td ∈ {0, 1}: indicates whether circuit configuration td

uses circuit path c.
• ϕv,c ∈ {0, 1}: indicates whether node v is the source or

target node of circuit path c.
• hd ∈ R: traffic volume of demand d.

Constraints: ∑
td∈Td

gtd = 1 ∀d ∈ D (16)

−wc +
∑
d∈D

∑
td∈Td

ρc,td ·
hd
ξ
· gtd ≤ 0 ∀c ∈ C (17)∑

c∈C
wc · ϕv,c ≤ ηv ∀v ∈ V (18)

Objective: ∑
c∈C

wc → min . (19)

Equation (16) ensures that a demand is routed on exactly
one path. The constraint (17) ensures that enough circuits
are activated depending on the chosen paths. Constraint (18)
activates a sufficient amount of transceivers to accommodate
the active optical circuits. Finally, the objective (19) minimizes
the number of active circuits and therefore also the number of
active transceivers.

D. Matrix Form

An intermediate step of the ILP to QUBO mapping de-
scribed in Sec. II-C is the reformulation of the ILP in matrix

form. Thus, the network allocation ILP given in Sec, III-C is
equivalent to

A =

G|D|×|T | 0|D|×|C|

H |C|×|T | −I|C|×|C|
0|V |×|T | ϕ|V |×|C|

 , b = −
1|D|0|C|

η|V |

 , s =
0|D|sc

|C|

s
|V |
η

 ,

x =

[
g|T |

ω|C|

]
, c> =

[
0|T | 1|C|

]
. (20)

The term | · | in the superscript of the matrices defines the
size of the used sets C,D, T and V and defines the matrix’s
dimensions. Vector resp. matrix 0 contains only zero values,
and entries of 1 are all one. I is a identity matrix.

Column vector x contains the ILP’s variables g = [gtd ] ∈
{0, 1}|Td| and ω = [ωc] ∈ {N ≤ ωmax}|C|. c contains the
weights to realize the cost function (19) of the ILP.

The rows of A, b and s are ordered according to the
constraints of the ILP. The first row with matrix

G =


11×|T1| 01×|T2| . . . 01×|T|D||

01×|T1| 11×|T2| . . . 01×|T|D||

...
...

. . .
...

01×|T1| 01×|T2| . . . 11×|T|D||

 (21)

describes the possible path selection according to (16). The
second row describes how the traffic volume hd per demand
d are distributed over the set of circuits C, cf. (17). As hd
is typically a real number we perform a quantization, defined
by a number of digits a ∈ N, and normalization to the single
circuit capacity ξ in the form

hd =

⌈
hd ∗ 2a

ξ

⌉
· 1
2a
. (22)

Expression d·e indicates a rounding to the next larger integer
value. Together with ρd = [ρc,td ] ∈ {0, 1}|C|×|Td|, describing
the existence of a circuit c inside a circuit configuration td for
demand d, the matrix H can be given as

H =
[
h1ρ1 h2ρ2 . . . h|D|ρ|D|

]
(23)

The last row of A,b and s considers the limited amount of
installed transceivers η = [ηv] ∈ {N ≤ ηmax}|V | per node
v, cf. (18). Thereby, ϕ = [ϕv,c] ∈ {0, 1}|V |×|C| describes
whether a transceiver at node v is connectable to a circuit c.

The slack vector s has an all-zero block entry in the first
block as (16) is an equality constraint. sc = [sc] ∈ {N ≤
a}|C| and sη = [sη] ∈ {N ≤ ηmax}|C| are variables with a
limited integer space. A set of results, obtained by following
the procedure of Sec. II-C and the final optimization of the
QUBO matrix Q on a quantum annealer, have to be checked
according to their feasibility. The feasibility is given if g and
ω fulfill the conditions

Gg
!
= 1, Hg − ω

!
≤ 0, ϕω − η,

!
≤ 0 (24)



TABLE I
SELECTED VALUES FOR ηmax , LIMIT OF INSTALLED TRANSCEIVERS PER

NODE, AND THE MAXIMAL AMOUNT ωmax OF PARALLEL CIRCUITS AT
CIRCUIT PATH c IN DEPENDENCE OF THE NETWORK SIZES |V |.

|V | 3–4 5–7 8–11 12 13–16

ηmax 15 31 63 63 127
ωmax 3 3 3 7 7

N1

N2

N3

N4

N5

N6

N7 N8 N9

N10

N11

N12

N13 N14 N15 N16

300km

3
0
0
k
m

Fig. 4. Topology of a growing network. ( ): smallest network with 3 nodes,
( ): exemplary extension to a 8 node network, ( ) maximal considered
extension.

IV. FEASIBILITY STUDY

A. Network Scenario

For studying the performance of our approach and the
scalability in terms of the network size, a growing network
topology is used as depicted in Fig. 4. The nodes of this
topology are added in ascending order starting with a 3
node network in the lower left corner. The edges are added
correspondingly. The vertical and horizontal distance between
neighboring nodes is set to 300 km. A set of topologies with
|V | ∈ {3, 4, . . . , 8} ⊂ N was studied to test the feasibility of
finding an embedding. The three node network was studied
to analyze the probability for the annealer to find feasible
solutions.

The network loads are defined by a demand matrix with
values hd for traffic demands between the pairs of disjunct
nodes d ∈ D. The values for hd are samples of a normal
distribution N (µ, σ) with µ = 75 and σ = 20.

B. Solution Strategy

The solution strategy for reaching a tactile resource alloca-
tion in wide area networks can be stated as follows.

1) For a fixed network problem, we generate QUBOs with
different penalty terms, qubit permutations, and number
of slack digits (affecting the shape and values of the
QUBOs while solving the same problem).

2) We heuristically search different embeddings for each
class of QUBO (i.e., with the same dimension and
structure).

3) We submit the QUBO with varying annealing meta
parameters (i.e., chain strength, total annealing time,
annealing schedules, and more).

4) We post-process obtained solutions and classify them
by feasibility (solution or x-components fulfill the con-
straints), QUBO energy (value of ψ>Qψ+C), solution

TABLE II
NUMBER OF 1000 SAMPLES PER PENALTY TERM AND ANNEALING

SCHEDULE. GREEN ENTRIES FOUND FEASIBLE SOLUTIONS.

tps/p 1 2 4 8 16 1000

1µs 600 170 48
50µs 117
100µs 99
100µs @ 0.35 + 20µs 50 50 50 50 50
100µs @ 0.50 + 20µs 50 50 60 50 50
500µs 30
1000µs 17

energy (value of c>x; i.e., QUBO energy ignoring the
penalty part) and number of occurrences per time to
solution.

In total, we have gathered a total of Nψ = 5.1 ·107 samples
distributed over Ns = 3.3 · 103 submissions for in total NE =
40 different embeddings resulting in over Nc = 2 ·103 distinct
parameter combinations. We have varied parameters which
we found to have a larger impact on a logarithmic scale. In
particular, these were the annealing schedules and the penalty
term. The annealing schedules were varied in the range of an
annealing time per sample of tps = 1, 50, 100, 500, 1000µs
and a stop schedule where, for 100µs, the annealing was
stopped at an interval of s = 0.35, 0.5 (allowing for more
transverse Ising model interaction time). The penalty term was
varied from p = 1, 2, 4, 8, 16, 1000. See also Tab. II for the
number of samples per parameter configuration. Table cells
highlighted with a green color are parameter combinations
which returned feasible solutions.

All further run parameters and specifications are logged to
a database and openly accessible under 1.

C. Hardware Limitations of the used Quantum Annealer

As mentioned in Sec. II-D the embedding of a QUBO to
the D-Wave’s quantum annealer is an important step. The
optimization problem size, i.e. the dimension of the QUBO,
can be expressed by the number of required logical qubits.
As logical qubits are realized by a coupled chain of physical
qubits, the average chain length can be seen as a metric for the
efficiency of an embedding. Fig. 5 shows this metric for 3 to
6 node networks. The varied number of digits a changes the
numerical accuracy of the ILP’s constraint (17), and changes
therewith the problem size. We observe that the average chain
length follows a linear law of 2.13 · |V |. This can be used for
extrapolation to larger network sizes, as the QUBO embedding
for larger network with more than 6 nodes are not achievable
at the D-Wave Advantage 5.2™ for now.

Fig. 6 shows the resulting relative hardware utilization of
the quantum annealer for network problems with 3 to 16
nodes. The D-Wave Advantage 5.2™ provides in total 5 600
physical qubits and roughly 40 100 coupling elements. This
marks the 100% line of hardware utilization. The amount
of required logical qubits increases with the network size

1Open Data Access: https://jugit.fz-juelich.de/qnet-public/home/

https://jugit.fz-juelich.de/qnet-public/home/
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Fig. 5. Average chain length (physical qubits needed to form a logical
qubit) depending on the number of nodes in the network and digits required
to reperesent demands. The grey band represents a one-parameter fit with
propagated uncertainties.

in a range from 66 to 3822, i.e. 1.1% to 66.4%. Further,
the QUBOs of the network problems require a connectivity
in the range of 684 to 182110, i.e. these are the non-zero
elements of Q. The amount of maximal available couplers is
already exceeded for a network of 12 nodes. As chains of
qubits must be built for a proper mapping between logical
and physical qubit structure, the amount of physical available
qubits is already exceeded for networks with 7 or more nodes.
The required amount of physical qubits can be obtained by
multiplication of the average chain length and amount of
logical qubits, e.g. the 6 node network with 5 digit accuracy
has 532 × 8.8 = 4682 physical qubits. We summarize, that
the embedding of network problems in QUBO form into the
D-Wave’s quantum annealer is constrained by the number
of physical qubits or the connectivity of individual qubits.
Increasing the problem accuracy increases the problem size
and therefore the required QPU hardware. This effect is not
as strong as adding further nodes to a network. Extrapolation
of the physical qubit curve in Fig. 6 allows us to estimate
how large a QPU in terms of physical qubits for real network
problems should be—at least 10 times more physical qubits
are required to operate a wide-area network with a reliable
size of 12 to 16 nodes by quantum annealing. An increase
of individual qubit’s connectivity would also enable access to
larger networks, which is however more difficult to quantify.

D. Results for a 3-Node Network Problem

Based on a 3 node network problem we study the solvabil-
ity and its dependence on annealing parameters, numerical
accuracy and various embeddings. Fig. 7 shows the energy
distribution of Eq. (12) for solution vectors obtained by the
annealing process in a summary over the various parameter
settings. Compared to a random bit guessing approach we
observe that quantum annealing provides solution vectors
with significantly lower energy values that follow a different
distribution.

A more detailed view can be given by analyzing the
feasibility, determined by evaluating Eq. (7) post anneal, of
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solution samples and evaluation of the finally obtained cost
value according to Eq. (6).

A more detailed view can be seen by analyzing the fea-
sibility of solution samples, determined by evaluating eq. (7)
post anneal, and evaluation of the final cost value according to
eq. (6). Fig. 8 shows the amount (white numbers) of obtained
feasible solutions per integer cost values. The best solution
we have found, corresponding to a cost value of 8, is one
cost step appart from the best reference solution with a
cost of 7. The results can be further grouped according to the
applied annealing times. It can be observed, that results within
the category of a 100µs annealing duration are better than for
the 1µs case. Overall, feasible solutions are very rare if it
is compared with all obtained samples. This obtained ratio
lays below 1.3×10−5 and determines the values of the y-axis
of Fig. 8. At this point, it is not possible for us to disentangle
if the choice of the penalty term, the annealing schedule, other
paramters, or their interplay are responsible for the qualtiy and
frequency of the optimal solution within a suitable region.
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sample (without overhead), and the number within the bars is the count for a
given category. The dashed line is a known reference solution (with value 7).

V. CONCLUSION AND OUTLOOK

We proposed an algorithmic approach relying on the cutting-
edge technology of quantum computing for the optimization
of resource utilization in SDN-controlled optical wide-area
networks. The optimization problem is modelled by an ILP,
translated in several steps to a QUBO, which can be solved
on a quantum annealer like the D-Wave Advantage™ 5.2.
The algorithm can be used for traffic engineering, resource
allocation and restoration. At the current stage, feasible re-
configurations for a three-node problem can be obtained
every minute or more frequently (defined by chance to find
a feasible solution and samples generated over an effective
run time). As quantum computing can be superior against
classical computing, demonstrated in [15], a further speed-
up might be achievable by newer generations of quantum
computers or a problem specific QPU, such that network
reconfiguration within seconds or below might be possible.
Our feasibility study shows that the proposed network problem
for up to 6 nodes can be embedded on the D-Wave QPU. We
estimate that the amount of physical qubits, assuming the same
qubit connectivity, should be in the range of 50 000 or above
to optimize networks in reasonable sizes (12 to 16 nodes).
Further, we studied the quantum-based solvability of a 3 node
network. Compared to a random guessing method, solutions
obtained by the quantum annealer show a significant lower
energy on average. Solution vectors are checked for feasibility
and compared with a reference solution obtained by CPLEX
(classical ILP-solver). We showed that feasible solutions with
cost values close to the reference solution are obtainable. We
discovered that a setting with penalty of 4 and annealing
time of 100µs achieved the best results. We see indications
that some annealing parameter configurations have a higer

chance to return feasible solutions—potentially allowing to
find feasible solutions within less than a minute of run time.
The parameter variations for the annealing process has to be
studied further as the current solution set represents only an
empirical sample set which does not not allow one to formulate
strong statement on statistical correlations. iT Finally, as larger
Ising model based solvers with up to 100 000 qubits [14] are in
the reach, embedding 12 to 16 node networks seems realistic
in the near future. It remains to be shown that obtaining
feasible solutions within a reasonable time is possible for such
larger networks. This is the focus of our ongoing research. If
succesfull, the proposed approach for network optimization
has the potential to have a large impact on how networks are
operated in the future enabling real-time network automation.
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