001     916214
005     20221221131716.0
024 7 _ |a arXiv:2212.02365
|2 arXiv
024 7 _ |a 2128/33235
|2 Handle
037 _ _ |a FZJ-2022-06015
100 1 _ |a Kim, Jangho
|0 P:(DE-Juel1)188816
|b 0
|e Corresponding author
|u fzj
111 2 _ |a The 39th International Symposium on Lattice Field Theory, LATTICE2022
|c Bonn
|d 2022-08-08 - 2022-08-13
|w Germany
245 _ _ |a Error reduction using machine learning on Ising worm simulation
260 _ _ |c 2022
300 _ _ |a 018
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1671621761_4311
|2 PUB:(DE-HGF)
500 _ _ |a 8 pages, 18 figures, 39th International Symposium on Lattice Field Theory, LATTICE2022 8th-13th August 2022, Bonn, Germany
520 _ _ |a We develop a method to improve on the statistical errors for higher moments using machine learning techniques. We present here results for the dual representation of the Ising model with an external field, derived via the high temperature expansion and simulated by the worm algorithm. We compare two ways of measuring the same set of observables, without and with machine learning: moments of the magnetization and the susceptibility can be improved by using the decision tree method to train the correlations between the higher moments and the second moment obtained from an integrated 2-point function. Those results are compared in small volumes to analytic predictions.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Unger, Wolfgang
|0 P:(DE-HGF)0
|b 1
856 4 _ |u https://juser.fz-juelich.de/record/916214/files/2212.02365.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916214
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188816
910 1 _ |a bielefeld university
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21