000916218 001__ 916218
000916218 005__ 20240711085623.0
000916218 0247_ $$2doi$$a10.1039/D2GC03368B
000916218 0247_ $$2ISSN$$a1463-9262
000916218 0247_ $$2ISSN$$a1463-9270
000916218 0247_ $$2Handle$$a2128/33711
000916218 0247_ $$2WOS$$aWOS:000895887200001
000916218 037__ $$aFZJ-2022-06019
000916218 082__ $$a540
000916218 1001_ $$0P:(DE-Juel1)130483$$aSchreiber, Andrea$$b0$$ufzj
000916218 245__ $$aOxide ceramic electrolytes for all-solid-state lithium batteries – cost-cutting cell design and environmental impact
000916218 260__ $$aCambridge$$bRSC$$c2023
000916218 3367_ $$2DRIVER$$aarticle
000916218 3367_ $$2DataCite$$aOutput Types/Journal article
000916218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674123910_16420
000916218 3367_ $$2BibTeX$$aARTICLE
000916218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916218 3367_ $$00$$2EndNote$$aJournal Article
000916218 520__ $$aAll-solid-state batteries are a hot research topic due to the prospect of high energy density and higher intrinsic safety, compared to conventional lithium-ion batteries. Of the wide variety of solid-state electrolytes currently researched, oxide ceramic lithium-ion conductors are considered the most difficult to implement in industrial cells. Although their high lithium-ion conductivity combined with a high chemical and thermal stability make them a very attractive class of materials, cost-cutting synthesis and scalable processing into full batteries remain to be demonstrated. Additionally, they are Fluorine-free and can be processed in air but require one or more high temperature treatment steps during processing counteracting their ecological benefits. Thus, a viable cell design and corresponding assessment of its ecological impact is still missing. To close this gap, we define a target cell combining the advantages of the two most promising oxidic electrolytes, lithium lanthanum zirconium oxide (LLZO) and lithium aluminium titanium phosphate (LATP). Even though it has not been demonstrated so far, the individual components are feasible to produce with state-of-the-art industrial manufacturing processes. This model cell then allows us to assess the environmental impact of the ceramic electrolyte synthesis and cell component manufacturing not just on an abstract level (per kg of material) but also with respect to their contributions to the final cell. The in-depth life cycle assessment (LCA) analysis revealed surprising similarities between oxide-based all-solid-state batteries and conventional Li-ion batteries. The overall LCA inventory on the material level is still dominated by the cathode active material, while the fabrication through ceramic manufacturing processes is a major contributor to the energy uptake. A clear path that identifies relevant research and development directions in terms of economic benefits and environmental sustainability could thus be developed to promote the competitiveness of oxide based all-solid-state batteries in the market.
000916218 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000916218 536__ $$0G:(BMBF)13XP0173A$$aFestBatt-Oxide - Materialplattform 'Oxide' im Rahmen des Kompetenzclusters für Festkörperbatterien (13XP0173A)$$c13XP0173A$$x1
000916218 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916218 7001_ $$0P:(DE-Juel1)173936$$aRosen, Melanie$$b1
000916218 7001_ $$0P:(DE-HGF)0$$aWaetzig, Katja$$b2
000916218 7001_ $$0P:(DE-HGF)0$$aNikolowski, Kristian$$b3
000916218 7001_ $$0P:(DE-HGF)0$$aSchiffmann, Nikolas$$b4
000916218 7001_ $$0P:(DE-HGF)0$$aWiggers, Hartmut$$b5
000916218 7001_ $$0P:(DE-Juel1)177898$$aKüpers, Michael$$b6
000916218 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b7$$ufzj
000916218 7001_ $$0P:(DE-Juel1)130467$$aKuckshinrichs, Wilhelm$$b8$$ufzj
000916218 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9
000916218 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b10$$eCorresponding author$$ufzj
000916218 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D2GC03368B$$gp. 10.1039.D2GC03368B$$n1$$p 399-414 $$tGreen chemistry$$v25$$x1463-9262$$y2023
000916218 8564_ $$uhttps://juser.fz-juelich.de/record/916218/files/LCA%20of%20Oxide%20ceramic%20electrolytes%20for%20all-solid-state%20lithium%20batteries.docx$$yOpenAccess
000916218 8564_ $$uhttps://juser.fz-juelich.de/record/916218/files/d2gc03368b.pdf$$yOpenAccess
000916218 8767_ $$d2023-01-19$$eAPC$$jPublish and Read$$zRSC
000916218 909CO $$ooai:juser.fz-juelich.de:916218$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000916218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130483$$aForschungszentrum Jülich$$b0$$kFZJ
000916218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173936$$aForschungszentrum Jülich$$b1$$kFZJ
000916218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ
000916218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130467$$aForschungszentrum Jülich$$b8$$kFZJ
000916218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b9$$kFZJ
000916218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b10$$kFZJ
000916218 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000916218 9141_ $$y2023
000916218 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000916218 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000916218 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000916218 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
000916218 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000916218 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
000916218 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916218 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-25
000916218 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
000916218 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-22$$wger
000916218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2022$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
000916218 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2022$$d2023-10-22
000916218 920__ $$lyes
000916218 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000916218 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000916218 9801_ $$aFullTexts
000916218 980__ $$ajournal
000916218 980__ $$aVDB
000916218 980__ $$aUNRESTRICTED
000916218 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000916218 980__ $$aI:(DE-Juel1)IEK-1-20101013
000916218 980__ $$aAPC
000916218 981__ $$aI:(DE-Juel1)IMD-2-20101013