000916225 001__ 916225
000916225 005__ 20240625095034.0
000916225 0247_ $$2doi$$a10.1126/science.abn3794
000916225 0247_ $$2ISSN$$a0036-8075
000916225 0247_ $$2ISSN$$a1095-9203
000916225 0247_ $$2ISSN$$a1947-8062
000916225 0247_ $$2Handle$$a2128/34349
000916225 0247_ $$2pmid$$a35446630
000916225 0247_ $$2WOS$$aWOS:000788553700022
000916225 037__ $$aFZJ-2022-06026
000916225 082__ $$a500
000916225 1001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b0$$eCorresponding author
000916225 245__ $$aSuperconductors gain momentum
000916225 260__ $$aCambridge, Mass.$$bMoses King$$c2022
000916225 3367_ $$2DRIVER$$aarticle
000916225 3367_ $$2DataCite$$aOutput Types/Journal article
000916225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1682490888_10605
000916225 3367_ $$2BibTeX$$aARTICLE
000916225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916225 3367_ $$00$$2EndNote$$aJournal Article
000916225 520__ $$aIn a superconducting material, electrical resistivity abruptly disappears below a critical temperature. Discovered in solid mercury in 1911, superconductivity remained an unsolvable riddle until 1957, when physicists Bardeen, Cooper, and Schrieffer developed a theory explaining the phenomenon (1). According to the Bardeen-Cooper-Schrieffer (BCS) scheme, superconductivity arises when electrons form pairs that behave in a way that allows current to flow with zero resistance. Then, in 1964, Fulde and Ferrell (2) and Larkin and Ovchinnikov (3) pointed out that in the presence of a magnetic field, a different type of superconducting electron pairs could form. However, despite the intense search, direct evidence of this Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state has proven hard to find. On page 397 of this issue, Kinjo et al. (4) report the observation of FFLO-driven spin-density modulations in the layered perovskite Sr2RuO4—a system with its own peculiar history.
000916225 536__ $$0G:(DE-HGF)POF4-5212$$a5212 - Emergent Quantum Phenomena (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000916225 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916225 773__ $$0PERI:(DE-600)2066996-3$$a10.1126/science.abn3794$$gVol. 376, no. 6591, p. 350 - 351$$n6591$$p350 - 351$$tScience$$v376$$x0036-8075$$y2022
000916225 8564_ $$uhttps://juser.fz-juelich.de/record/916225/files/paper.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000916225 8564_ $$uhttps://juser.fz-juelich.de/record/916225/files/science.abn3794.pdf$$yRestricted
000916225 909CO $$ooai:juser.fz-juelich.de:916225$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b0$$kFZJ
000916225 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5212$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000916225 9141_ $$y2022
000916225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916225 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bSCIENCE : 2021$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-26$$wger
000916225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCIENCE : 2021$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000916225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000916225 920__ $$lyes
000916225 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000916225 9801_ $$aFullTexts
000916225 980__ $$ajournal
000916225 980__ $$aVDB
000916225 980__ $$aUNRESTRICTED
000916225 980__ $$aI:(DE-Juel1)IAS-3-20090406
000916225 981__ $$aI:(DE-Juel1)PGI-2-20110106