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Dual communities in spatial networks

Franz Kaiser 1,2, Philipp C. Böttcher 1, Henrik Ronellenfitsch 3,4,
Vito Latora 5,6,7 & Dirk Witthaut 1,2

Both human-made and natural supply systems, such as power grids and leaf
venation networks, are built to operate reliably under changing external
conditions. Many of these spatial networks exhibit community structures.
Here, we show that a relatively strong connectivity between the parts of a
network can be used to define a different class of communities: dual com-
munities. We demonstrate that traditional and dual communities emerge
naturally as two different phases of optimized network structures that are
shaped by fluctuations and that they both suppress failure spreading, which
underlines their importance in understanding the shape of real-world supply
networks.

Community structures are a fundamental trait of complex networks
and have found numerous applications in systems ranging from social
networks1 to biological networks2,3 and critical infrastructures such as
power grids4. Typically, communities are defined by a strong con-
nectivity within the community compared to a relatively weak con-
nectivity between different communities1,5,6. They may correspond to
functional units of the network, for instance inmetabolic networks7, or
actual communities in social networks.

Intuitively, community structures play an important role for
the spreading of failures or perturbations in networked systems.
The low connectivity impedes spreading processes, such that per-
turbations can be expected to stay within the community, which is
both predicted by theory8,9 as well as observed in experiments10.
Community structures thus provide robustness in complex net-
works, but other structural patterns may have a comparable effect.
In particular, it has been shown that hierarchical structures
may provide similar features, for instance in vascular networks
of plants11,12.

In this article, we provide a unified view on the role of
communities and hierarchies for network robustness based on
the concept of graph duality. The dual graph is most naturally
defined for spatially embedded networks, i.e., networks that are
embedded in the plane without edges crossing each other. This
class of networks includes a large variety of man-made and bio-
logical systems13–16. The vertices of the dual correspond to the
faces of the original, primal graph. Two dual vertices (faces) are

connected if they share at least one edge. Graph duality has been
previously used to study fixed points in oscillator networks17,18

and to speed up network algorithms19,20. Here we use this concept
to reveal patterns in the network structure that are hidden in the
primal graph. In particular, we establish dual communities—
communities that are defined within the dual graph—and high-
light their relation to hierarchical network structures. Further-
more, graph duality readily explains why both weak and strong
connections can make a network robust: strong connections in
the primal translate into weak connections in the dual and
vice versa.

The article is organized as follows. We first demonstrate how
different structural patterns impede spreading processes and
thus contribute to the robustness of a network. Focusing on flow
networks, we formalize the concept of graph duality and establish
dual communities. Second, we investigate essential properties of
dual communities, in particular their link to hierarchical patterns
and the geometry of the community boundaries. Finally, we study
the emergence and impacts of communities structures. Using
optimization models, we study why networks develop a primal or
a dual community structure. We provide a deeper analysis of the
link between communities and network robustness by employing
different simulation models. Throughout the article we use the
terms graph and network interchangeably. The term “graph”
stresses the structural aspects while “network” stresses the
functional aspects of the system.
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Results
Network robustness and community structure
We first highlight how network robustness is related to the presence
of communities for selected examples. Robustness is essential for
critical infrastructures such as electric power grids. The high-
voltage transmission grid of Scandinavia (Fig. 1a, c) has an obvious
community structure due to geographic reasons. Finland is only
weakly connected to the rest of Scandinavia through two high-
voltage transmission lines.We simulate the impact of a transmission
line failure, which is the biggest threat for large-scale blackouts21.
We use the linear power flow or DC approximation22,23, which will be
described in detail below. The flow changes after the failure gen-
erally decay with the distance to the failing transmission line, but we
also observe a strong impact of the community boundary. Flow
changes are strongest in the community where the failure occurs, in
this case Sweden. They are substantially suppressed in the other
community, i.e., Finland, which also reduces the risk of a global
cascade of failures.

Remarkably, a similar suppression of failure spreading is rea-
lized by strong connections. We consider the venation network of a
leaf, which includes a strong central vein separating the left and right
half (Fig. 1b, d). The flow of water and nutrients is described by a
linear flow network11, which ismathematically equivalent to the linear
power flow approximation. If a secondary vein fails, we observe a
very similar picture as for the power grid: flow changes generally
decay and are strongly suppressed in the other half of the leaf. The
central vein itself features large flow changes and thus provides a
buffer function. We conclude that weak and strong connections can
equally suppress the spreading of failures. We will show that both
effects are fully equivalent and that they can be understood in terms
of network communities, provided we generalize the definition of
communities.

Before wemove to a more detailed analysis, we demonstrate the
generality of the observed phenomena. We consider a classic model

of network cascades24,25. Nodes are either healthy/operational (state
0) or infected/faulty (state 1). A node i gets infected or faulty if the
weighted average over all neighbors’ states exceeds a certain
threshold ϕi. Starting from a small amount of nodes in state 1, a
cascade may emerge depending on the values ϕi and the structure of
the network. As before, we consider networks which can be sepa-
rated into two parts by either weak or strong connections (Fig. 1e, f).
More precisely, we consider a lattice where the edges in the middle
region have a tunable weightw, while all other edges haveweight one
(see “Methods” for details).We observe that a homogeneous network
(w = 1) always leads to a global cascade, where all nodes are infected
or faulty in the final state. A boundary, either by weak (w≪ 1) or
strong (w≫ 1) connections, effectively stops the cascade. Only those
nodes are infected, which are located in the same half as the initially
infected ones.

Flow networks and dual communities
We have shown that strong connections can divide a network and
enhance its robustness similarly as weak connections do. Even more,
we can establish a full mathematical equivalence of weak and strong
connections in the case of flow networks. This equivalence leads to a
generalization of the definition of community structures in complex
networks.

Linear flow networks arise in a variety of applications, including
electric circuits26,27, power grids22,23, hydraulic networks28,29, and vas-
cular networks of plants11. In these networks, the flow from node i to
node j is given by Fi→j =wij ⋅ (θi − θj), where wij is the connectivity or
conductivity of the edge (i, j). The nodal variable θi describes the
local voltage or potential in an electric circuit, the voltage phase
angle in a power grid, or the pressure in a hydraulic or vascular
network. The flows have to satisfy the continuity equation (or
Kirchhoff’s current law, KCL) at every node i of the network,
∑j Fi→j = Pi, where Pi is the inflow to the network.

Fig. 1 | Different structural patterns separate networks and increase network
robustness. a Topology of the Scandinavian power grid, with weak connectivity
between different geographic units, in particular Finland. b Venation network of
the leaf Schizolobium amazonicum, with a strong central vein separating the leaf
into left and right. The width of the lines in a, b encode the edge weights. c, d Flow
changes ∣ΔF∣ after the failure of a single edge (colored in red) for the two networks
shown in a,b. The impact of the failure is strongly suppressed in another part of the
network, i.e., in Finland and the right half of the leaf, respectively. This highlights
the existence and impact of boundaries that separate the network into commu-
nities. e Simulation of a classic model of global cascades24,25 in a lattice with inho-
mogenous edge weights. Edges in the middle have weight wℓ (indicated by thin/

thick lines), while all other edges have aweight ofwij = 1 (see “Methods” for details).
Infected/faulty nodes are shown as yellow triangles, healthy/operational nodes as
green circles. A global cascadeoccurs for a homogeneous lattice (wℓ = 1),whileboth
weak (wℓ = 10−2) and strong connections (wℓ = 102) stop the cascade from propa-
gating to the right part of the network. f Final fraction ρ∞ of nodes that become
infected/faulty during the cascade as a function of theweight parameterw. The line
represents themedian and the shaded region the 25–75%quantile for 1000 random
initial conditions. For homogeneous lattices (w = 1), the cascade reaches all nodes
(ρ∞ = 1). For both weak (w≪ 1) and strong (w≫ 1) conditions, the cascade stops at
the boundary such that ρ∞ ≈0.5.
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These equations can be recast in a compactmatrix notation. LetN
denote the number of nodes and M the number of edges in the net-
work, whichwe assume to be connected.We fix anorientation for each
edge to keep track of the direction of flows and define the edge-node
incidence matrix I 2 RM ×N as

I‘n =

+ 1 if edge ‘ starts atnoden,

�1 if edge ‘ ends at noden,

0 otherwise:

8><
>: ð1Þ

The edge weights are summarized in a diagonal matrix W =
diag(w1,…,wM) while all other quantities are summarized in vectors
θ= ðθ1, . . . ,θNÞ>, P= ðP1, . . . ,PNÞ>, F= ðF1, . . . , FM Þ>. Note, the ordering
of the edges in the edge-node incidence matrix I and the weights in
the diagonal matrix W have to be consistent such that the weight of
edge k connecting nodes i and j is given by wk =wij. Then the relation
of flows and potentials is given by F =WIθ and Kirchhoff’s current
law reads

P= I>F= I>WI|fflffl{zfflffl}
=: L

θ: ð2Þ

Equation (2) is a discrete Poisson equation that determines the
potential θ up to an irrelevant additive constant. Thematrix L 2 RN ×N

is nothing but the well known graph Laplacian with components

Lij =

�wij if i is connected to j,P
kwik if i= j,

0 otherwise:

8><
>: ð3Þ

The Laplacian is a central object in spectral graph bisection30, a
classic method of community detection, which will be further
elaborated below.

The above description focuses on the nodes of the network, with
the nodal potentials θ being the central quantity of interest. An
equivalent description exists that focuses on the edges of the net-
work and the flows F. The starting point is the KCL I⊤F = P. This linear
set of equations is underdetermined in terms of F, such that the
general solution can be written as the sum of a particular solution
and an arbitrary solution of the associated homogeneous equation,
namely

F=Fpart +Fhom: ð4Þ

The vectorFhomdescribes aflowwithout sources or sinks, that is, a
collection of cycle flows. The cycle flows forma vector space (the cycle
space) such that we can expand each cycle flow into a suitable basis. A
distinguished basis exists for plane graphs, i.e., graphs embedded in
the plane, which can be constructed in the following way. A face of a
plane graph is a region that is bounded by edges, but contains no
edges in the interior. The boundary edges of each face then provide
one basis vector of the cycle space. Further details are given in
the Supplementary Information.

To keep track of the basis, we introduce the cycle edge incidence
matrix C 2 RM × ðM�N + 1Þ with components

C‘c =

+ 1 if edge ‘ is partof face c,

�1 if reversed edge ‘ is part of face c,

0 otherwise:

8><
>: ð5Þ

Then we can write the general solution of the KCL as

F=Fpart +C f ð6Þ

with an arbitrary cycle flow vector f. The actual values of the cycle
flows are then determined by Kirchhoff’s voltage law (KVL), which
states that the potential differences around any closed cycle sum
up to zero. In fact it is sufficient to enforce this for the M − N + 1
basis cycles. We can thus formulate the KVL in terms of the
flow vector F as

C>W�1F=0: ð7Þ

Crucially, this equation includes the matrix W−1 which translates
flows into potential differences. Substituting Eq. (6) then yields

Q = C>W�1C|fflfflfflfflffl{zfflfflfflfflffl}
=L*

f :
ð8Þ

Notably, this equation has the same mathematical structure as
Eq. (2): It is a discrete Poisson equationwith a Laplacianmatrix L* and a
source term Q = −C⊤W−1Fpart. However, the Laplacian L* is not defined
on the original primal graph, but on the dual graph. The vertices of this
dual graph are given by the faces of the primal graph, while two nodes
of the dual graph are connected by a dual edge if the corresponding
faces share an edge.

Comparing the Laplacian of the primal graph L = I⊤WI to that of
the dual graph L* =C⊤W−1C, we see another essential aspect of graph
duality: The weights of the dual edges are inverse to the weights of the
primal edges. More precisely, we find the dual weights

w*
c,d =

X
‘2c,d

1
w‘

ð9Þ

of the edge that connects the nodes c and d in the dual graph corre-
sponding to faces c andd that share the edge ℓ in theprimal graph. This
relation showsmost clearlywhyweakand strong connections canboth
affect the robustness and the community structure of a network.
Strong connections in the primal correspond to weak connections in
the dual and vice versa. Similarly, a strong central vein in the primal
corresponds to weak connections in the dual and thus to a pro-
nounced community structure.

We have now introduced all mathematical tools to identify dual
communities in planar complex networks. Starting from the primal
network, we identify all faces and define the dual graph with weights
given by Eq. (9). Then dual communities can be extracted by means of
any standard community detection algorithm.

In the following, we focus on spectral graph bisection because of
its direct link to the graph Laplacian—which is the central object in the
above analysis. This method relies on the fact that the community
structure is encoded in the second smallest eigenvalue of the graph
Laplacian λ2 ≥0, known as the algebraic connectivity or Fiedler value,
which vanishes if the graph consists of two disconnected components
and increases with increasing connectivity between the communities.
The graph nodes are then assigned to one of two communities based
on the corresponding eigenvector v2, the Fiedler vector: two vertices j
and i are in the same community if they share the same sign of the
Fiedler vector5.

sign ððv2Þi � hÞ= sign ððv2Þj � hÞ, ð10Þ

where h 2 R is a threshold parameter. Here, we choose h =0.
This method can be straightforwardly applied to the dual graph,

replacing the primal Laplacian L by its dual counterpart L*. The alge-
braic connectivity of the dual is measured by the second eigenvalue λ*2
and the associated eigenvector is used to identify the dual commu-
nities. We find that dual communities appear naturally in real-world
networks such as the venation networks of leaves (Fig. 2b, e). In the
following, we discuss essential properties of dual communities, in
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particular their relation to hierarchical structures, and provide a
thorough analysis of the dual algebraic connectivity λ*2. We stress that
other community detection methods can be applied to the dual graph
equally well and yield comparable results (cf. Supplementary Fig. S6).

Dual communities reveal hierarchical organization of supply
networks
The spectral clustering method for community detection can be
applied to both the primal and the dual graph, revealing different
structural information about the network (Fig. 2). Furthermore, we
can use this approach to extract a network’s hierarchical organiza-
tion as follows. Starting from the initial network, we compute the
Fiedler vector, identify the communities and then split the network
into two parts at the resulting boundary by removing all edges
between the communities. Then we iterate the procedure starting
from the subgraphs obtained in the previous step. Repeated appli-
cation of this procedure reveals different boundaries and thus dif-
ferent hierarchies in the primal graph and in its dual (Fig. 2g, see
“Methods” for details).

Leaf venation networks are archetypal examples of hier-
archically organized networks, with a thick primary vein in the
middle and medium secondary veins that supply thin sub-
ordinated veins (Fig. 2b). The thick veins separate the network
into distinct parts—for instance, the left and right half separated
by the primary vein. This characteristic organization is clearly
revealed by dual community detection. Spectral graph bisection
identifies the primary vein that separates the left and the right
half of the leaf. Repeating the bisection then shows that this
organizational pattern repeats in a hierarchical order: dual com-
munities are split by secondary veins in a repeated manner
(Fig. 2h). Remarkably, an analog decomposition in the original

primal graph does not provide any useful information on the
network organization.

We conclude that leaf venation networks clearly display a dual
community structure, where the boundary of the dual communities
coincide with the primary and secondary veins. Hence, dual com-
munity detection allows to identify hierarchical organization pat-
terns in complex networks. We will provide amore formal treatment
of the relation between strong veins and dual communities below.

As a second example, we now turn to another type of spatially
embedded supply networks: power grids. Figure 2c shows the Eur-
opeanpower transmission grid and its dual graph. Again, a hierarchical
decomposition reveals different levels of hierarchies in the grid that
correspond to its functional components. These componentsmay also
be interpreted geographically: the mountain ranges such as the Pyr-
enees or the Alps aswell as the former Iron Curtain are clearly visible in
the decomposition of the primal graph. Remarkably, both primal and
dual decompositions provide useful structural information here. In
particular, there is a dual community boundary at cut level three that
spans Hungary and the border region between Slovenia and Croatia
and closely corresponds to aweak spot in the European power system,
where the grid was split into two mutually asynchronous fragments
on January8, 202131. Another split occurredon the 24thof Julybetween
Spain and France—where both the primal and the dual decomposition
detect a community boundary32.

Although mathematically similar12,33,34, the two types of networks
we studied display different structural hierarchies and communities.
Whereas leaf venation networks are evolutionarily optimized, the
structure of power grids depends strongly on historical aspects and
their ongoing transition to include a higher share of renewable energy
sources. This transition aspect also manifests in their community
structure, as we will see further below.

Fig. 2 | Primal and dual communities and hierarchies in spatial networks. a A
plane graph with edges characterized by either large (dark green), small (light
green) or intermediate edgeweights, and its associated dual graph. The dual graph
is constructed by transforming each face of the graph into a node of the dual, and
addingdual edgeswhenever two faces share anedge. Notice that anedgewith large
weight shared by two faces will imply a weak link between the two corresponding
nodes in the dual graph (see Eq. (9)). d Spectral clustering by means of the Fiedler
vector v2 reveals the community structure in both the graph (left) and its dual
(right).gBasedon repeated spectral clustering, the graphs are further decomposed
into a hierarchy of smaller sub-units which is different in the graph (left) and its

(dual). b, e, h If we perform the same analysis on the venation network of a leaf of
Acer platanoides, a decomposition of the original graph does not provide useful
information (e, h, left). A decomposition of the dual graph, however, reveals the
hierarchical organization and the functional units of the venation network
(e,h, right). c, f, iApplying the sameprocedure to theCentral European power grid,
(i, left) and its dual (i,right) show that primal anddual hierarchies provide different,
but equally useful information about the network structure. Wemay conclude that
this network represents an intermediate case between primal and dual community
structure (see main text for details).
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Connectivity and the geometry of community boundaries
The algebraic connectivity λ2 of a graph is closely related to its topo-
logical connectivity—the amount of connectivity between the two
communities35. For a weighted graph, one can derive the upper bound
(see Supplementary Note 2)

λ2 ≤μ2 =
N1 +N2

N1N2

X
‘2S

w‘, ð11Þ

where N1 and N2 respectively count the number of nodes in the two
communities. The set S contains all edges which are not within one of
the two communities but in between, providing a weak connection of
the communities (Fig. 3a). This set is referred to as a cut-set: If all edges
in S are removed, the graph is cut into the two communities. Notably,
the boundbecomes exact in the limit of vanishing connectivity (μ2→0)
as shown in the Supplementary Information.

Wederive an analogous bound for dual communities, transferring
geometric concepts from the primal to the dual. In particular, we
derive an analog to the cut-set S, which contains all edges, which are
elements of neither of the twocomponents. Consider a decomposition
of the dual graph G* = (V*, E*), where the dual vertex set V* is separated
into two components V *

1 and V *
2. Two faces c 2 V *

1 and d 2 V *
2 are

connected in the dual, if they share at least one edge in the primal
graph. Hence,wewillfind a set of primal edgeswhich belong tobothof
the two components (Fig. 3b). These primal edges, together with their

terminal vertices, constitutes a path p in the primal graph. In the fol-
lowing, we will refer to p as a cut-path as its removal disconnects the
graph. The edges along the cut-path essentially determine the com-
munity structure of the dual graph and its algebraic connectivity.
Given a cut-path p, we find the bound

λ*2 ≤μ
*
2 =

N*
1 +N

*
2

N*
1N

*
2

X
‘2p

1
w‘

, ð12Þ

where N*
1,2 = ∣V

*
1,2∣ counts the number of nodes in the dual commu-

nities. Notably, the expression μ*
2 does not only provide an upper

bound for the algebraic connectivity λ*2, but an approximation that
becomes exact in the limit of vanishing dual connectivity. We prove
these statements rigorously in the Supplementary Information.

The relation of cut-paths and dual communities is further inves-
tigated in Fig. 4 for both synthetic networks and leaf venation net-
works.Wefirst consider a square latticewith a tunabledual community
structure: The edges in the central vein have a higher weight w1 than
the remaining edges w0. We find that the dual algebraic and topolo-
gical connectivity λ*2 and μ*

2 become virtually indistinguishable for w1/
w0 ≳ 102. In venation networks, the boundaries between the dual
communities, i.e., the cut-paths, correspond to the primal and sec-
ondary veins as described above. A good agreement between μ*

2 and λ*2
is found especially for the two smaller venation networks from the
Parkia and Schizolobium family. This result further emphasizes the
intimate relation of dual communities and hierarchical organization in
complex networks.

Why do primal and dual communities emerge?
Understanding how the structure of optimal supply networks emerges
is an important aspect of complex networks research11,36–38. In cases
where a single source supplies the entire network, it is well established
that fluctuations in the supply can cause a transition from a tree-like
topology to a structure with loops11,34,36. We extend this result by
studying how the increase in fluctuations influences the optimal net-
work structure in supply networks with multiple strongly fluctuating
sources and weakly fluctuating sinks. This design is highly relevant for
many real-world applications, e.g., when considering a power grid that
is based on decentralized renewable energy sources that fluctuate
more than conventional carriers.

To interpolate between strongly fluctuating sources and
weakly fluctuating ones, we first use a similar model as in ref. 36.

Fig. 3 | Geometry of primal and dual community boundaries. a Decomposition
of a graph into two primal communities. Some edges belong to neither of the two
communities, but provide a weak connection between the communities. These
edges constitute the cut-set S.bAgraph (black solid lines) and its dual (gray dashed
lines), which is decomposed into two communities V *

1,2. Some primal edges,
colored in green, belong to faces from both communities. These primal edges,
together with their terminal nodes, constitute the cut-path p.

Fig. 4 | Algebraic and Topological Connectivity in the dual graph of synthetic
and real-world networks. a A square lattice with a tunable dual community
structure. The edge weights along the central vein w1 are stronger than the
weights w0 of the remaining edges. The ratio w1/w0 can be tuned to test the
relation of algebraic and topological connectivity given by Eq. (12).
b–d Hierarchical organization in leaf venation networks of three different spe-
cies revealed by repeated graph bisection of the dual graph. The dual

community boundary (yellow) constitutes a cut-path p. e Comparison of the
dual algebraic connectivity λ*2 and the dual topological connectivity μ*

2 defined
in Eq. (12). Circles refer to the case of the square lattice with the color of the
circles indicating the fraction w1/w0. The topological connectivity μ*

2 provides a
rigorous upper bound for λ*2, but also a good approximation for large parameter
regions. This correspondence shows how dual communities are decomposed by
a strong connectivity along the boundary.
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We consider a linear flow network consisting of a triangular lattice
with N nodes of which Ns are sources and N −Ns are sinks whose
outflows are fluctuating iid Gaussian random variables. Addition-
ally, we add fluctuations only to the sources of the networks that can
be tuned by the additional variance σ2

D (see “Methods”). We then
compute the optimal structure and edge weights of the network
that minimize the total dissipated energy D=

P
‘hF2

‘ i=w‘ averaged
over the fluctuating inflows and outflows. Resources for building
the network are assumed to be limited, which translates into the
constraint

P
ew

γ
e ≤ 1. The cost parameter γ quantifies how expensive

the increase of an edge weight is and was set to γ = 0.9 for the
examples presented in this manuscript (see Supplementary Note 4
for more information). Results for Ns = 2 sources are shown in Fig. 5,
and further results for Ns = 3 are provided in the Supplementary
Information.

We find that the optimal network structure changes strongly as
the fluctuations increase. For weak fluctuations, σ2

D ≈ 1, each of the Ns

sources supplies the surrounding area of the network. Only weak
connections are established between the areas to cope with the small
residual imbalances. Hence, the optimal networks show a pronounced
primal community structure (see Fig. 5a).

For strong fluctuations, σ2
D ≫ 1, a local area supply is no longer

possible and long-distance connectivity is required. Remarkably, this

connectivity is established in one central vein that links the two fluc-
tuating sources (see Fig. 5b). As a consequence, the optimal networks
show a pronounced dual community structure similar to leaf venation
networks. We can capture the transition from a primal to a dual
community structure in terms of the primal and dual Fiedler values
(Fig. 5e). Increasing σ2

D, we observe a smooth crossover from primal
communities with λ2→0 to dual communities with λ*2 ! 0. We note
that a similarpicture is found if the Fiedler values λ2 and λ*2 are replaced
by another measure such as the modularity (see Supplementary
Fig. S1). We conclude that optimal supply networks typically have a
community structure—whether it is primal or dual depends on the
degree of fluctuations.

Strikingly, an analogous transition is observed for actual power
transmission grids when optimizing the network structure for dif-
ferent levels of fluctuating renewable energy sources. We consider
the European power transmission grid and optimize its network
structure for different carbon dioxide (CO2) emission reduction
targets compared to the year 1990 ranging from 60% to 100%
reduction using the open energy system model “PyPSA-Eur”39 (see
“Methods” for details). In Supplementary Figs. S3 and S4, we illus-
trate how the generation mix in the optimized power system
changes for different emission scenarios from conventionally
dominated grids to highly renewable grids.

Fig. 5 | Primal and dual communities emerge naturally in optimal supply net-
works. a, bWe consider a triangular lattice with two fluctuating sources located at
the leftmost and the rightmost node andGaussian sinks attached to all other nodes.
The strength of the two sources fluctuates following a Dirichlet distribution with
variance σ2

D (see “Methods”). For each value of σ2
D, we find the network structure

and the edge weights that minimize the total dissipated energy D assuming limited
resources. c, d The optimal network structure shows a transition from primal to
dual communitiesmeasured by the Fiedler vectors (color code) of the primal graph
(c) or dual graph (d). e The scaling of the corresponding primal (λ2, dark blue) and
dual (λ*2, light blue) Fiedler value confirms the transition. The shaded regions
indicate the 25–75% quantiles for different runs. f,gA transition fromprimal to dual

community structure is also observed in optimization models of the European
power grid when generation shifts to fluctuating renewables. The figure shows the
optimal network structures and transmission line capacities in a cost optimal sys-
tem for different carbon-dioxide (CO2) emission reduction levels. h, i Primal and
dual communities are identifiedby the Fiedler vectors (color code) of (h) the primal
or (i) dual graph. j The transition is confirmed by the scaling of primal and dual
Fiedler values for increasing emission reduction which corresponds to an
increasing share of fluctuating renewables (lower axis). Simulations were per-
formed with the high-resolution European energy system model “PyPSA-EUR”39

that optimizes the investments and operations of generation and transmission
infrastructures for minimum system costs.
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We find that the decarbonization of power generation drives a
transition from primal to dual communities in the grid. A reduction in
generation-based CO2 emissions corresponds to an increased share of
power being produced by fluctuating renewable energy sources. With
increasing penetration of fluctuating renewables, we observe a
decrease in the dual Fiedler value λ*2 and an increase in the primal
Fiedler value λ2, which indicates a transition from primal to dual
communities in the optimized networks (Fig. 5j). Hence, the primal-
dual transition emerges both in fundamental models and in realistic
high-resolutions simulations of spatial networks.

How do primal and dual communities determine network
robustness?
Primal and dual communities both impede the spreading of failures
and thus improve the robustness of complex networks as shown in
Fig. 1. We will nowprovide amore detailed and quantitative analysis of
this connection for two important systems:flownetworks and coupled
oscillator networks.

We first consider linear flow networks using the theoretical
framework introduced above. Robustness is quantified by a sensi-
tivity factor, measuring the response of the network flows F to a
perturbation. As a perturbation, we add an inflow ΔP at a node v1
and an outflow of the same amount at another node v2. Here,
we focus on the case where v1 and v2 are the two end nodes of
an edge e = (v1, v2) and treat the general case in the Supplementary
Information. The source vector in the Poisson Eq. (2) then
changes as

P ! P0 =P+ΔP I>le ð13Þ

and le 2 ZM is the indicator function for edge e, which is equal to one at
the positions indicated by the subscript and zero otherwise. Inverting
the discrete Poisson Eq. (2), we thenfind that the networkflows change
by the amount

ΔF=ΔPWILyI>le, ð14Þ

where L† is the Moore–Penrose pseudoinverse of the primal graph
Laplacian. We then define a sensitivity factor as the ratio of the flow

change at edge ℓ and the perturbation strength ΔP as40,41

ηv1 ,v2,‘
=
ΔF ‘

ΔP
=w‘l

>
‘ IL

yI>le: ð15Þ

We note that the sensitivity factor is widely used in the context
of power system security analysis, where it is referred to as a power
transfer distribution factor40,41. Importantly, the sensitivity factor
may also be used to simulate the failure of an edge e = (v1, v2)
by choosing the inflow ΔP accordingly (see Supplementary
Information).

The sensitivity factor ηv1 ,v2,‘
elucidates the relation between pri-

mal communities and network robustness8. In the Supplementary
Information, we treat the limiting case of vanishing connectivity
between the communities and show the following: If the edges e and ℓ
are in different communities, η vanishes in the same way as the Fiedler
value λ2. If the edges e and ℓ are in the same community, η remains
finite as λ2→0.

Remarkably, we can find an analogous description in the dual
graph19,20. In Eq. (4), we choose the particular solution as ΔFpart =ΔP le.
We can then compute the cycle flows f from Eq. (8) and substitute the
result into Eq. (6) to obtain the change of network flows19,20

ΔF= �ΔP CðL*ÞyC>W�1le +ΔP le: ð16Þ

The sensitivity factor for all edges ℓ ≠ e thus reads

ηv1 ,v2,‘
= � 1

we
l>‘ CðL*ÞyC>le: ð17Þ

We see that the dual Laplacian L* contributes to the sensitivity
factor ηv1 ,v2,‘

in exactly the same way as the primal Laplacian L in
Eq. (15). Hence, we conclude that primal and dual community struc-
tures determine network flows in an equivalent manner. If the edges e
and ℓ are in different dual communities, ηwill vanishes proportional to
the dual Fiedler value λ*2. If the edges e and ℓ are in the same com-
munity, η remains finite in the limit λ*2 ! 0.

We now quantify this effect. To analyze the impact of a commu-
nity structure, we consider a square lattice with tunable edge weights.

Fig. 6 | Primal and dual communities inhibit failure spreading. a,bA square grid
is divided intoa twoprimal communitiesbyweakening the central horizontal edges
or b into two dual communities by strengthening the central vertical edges. The
Fiedler vector (color code) reveals the community structure. c, d Both primal and
dual communities inhibit flow changes ∣ΔF∣ (color coded) in the other community
after the failure of a single edge (red) with unit flow in a given community. e We
interpolate between primal and dual communities in a square grid of size 21 × 10 by

tuning the weight we of the horizontal edges or vertical edges (see a, b). The flow
ratio R reveals that failure spreading to the other community is largest forwℓ = 1. It
decays for either type of community asmeasured by primal and dual Fiedler values
λ2 (crosses) and λ*2 (circles), respectively. The green line represents the median
value and the shaded regions indicate the 25% and 75% quantiles. The symbol c
denotes a normalization constant used to improve comparison with R.

Article https://doi.org/10.1038/s41467-022-34939-6

Nature Communications |         (2022) 13:7479 7



We either reduce the edge weights wℓ across the boundary, i.e., in the
cut-set, to induce a primal community structure, or we increase the
edge weights wℓ along the boundary, i.e., in the cut-path, to induce a
dual community structure (Fig. 6a, b). We then consider an inflow and
simultaneous outflow ΔP at two nodes v1 and v2, respectively, that are
connected via an edge e = (v1, v2). We then compare the resulting flow
changes in the same (S) and the other (O) community as the given edge
e. To this end, we evaluate the ratio of flow changes R(e, d) in the two
communities at a given distance d to the trigger edge e33

Rðe,dÞ= h∣ΔFk ∣ik2Od

h∣ΔFr ∣ir2Sd

=
h∣ηv1 ,v2,k

∣ik2O
d

h∣ηv1 ,v2,r
∣ir2S
d

: ð18Þ

Here, h�i‘2Cd denotes the average over all edges ℓ in a community
C at a given distance d to the trigger edge e. To be able to neglect
the effect of a specific edge and the distance, we average over
all possible trigger edges e and distances d to arrive at the mean
flow ratio

R = hRðe,dÞie,d : ð19Þ

The mean flow ratio ranges from R ≈0 if the other module is
weakly affected, i.e., there is a strong community effect, toR ≈ 1 if there
is no noticeable effect. We note that R describes flow changes after
perturbations in the inflows and outflows as well as flow changes as a
result of the complete failure of edges (see Supplementary
Information).

Figure 6 illustrates that both primal and dual communities sup-
press flow changes in the other community. The mean flow ratio R
decays for either community structure. In particular, this decay is well-
captured by the Fiedler value of the primal (λ2) and the dual (λ*2) graph.

These findings are not restricted to linear flow networks, but hold
for all diffusively coupled networked systems. We illustrate this effect

for a network of second-order phase oscillators that arises in the
analysis of electric power grids18,42 or mechanically coupled systems43

and as a generalization of the celebratedKuramotomodel44. The phase
ϑi(t) of each oscillator i = 1,…,N evolves according to

Mi
€ϑi +Di

_ϑi =ωi +
XN
j = 1

wij sinðϑj � ϑiÞ, ð20Þ

where Mi is the inertia and Di the damping of the ith oscillator. To
analyze the impact of community structures, we consider a honey-
comb lattice with tunable edge weights, with either low weights wij≤ 1
across the boundary or high weights wij≥ 1 along the boundary. The
weights of all remaining edges are set to wij= 1 and wij = 0 if no edge
exists between nodes i and j.

We now investigate how the steady states of such a network react
to a localized perturbation near the community boundary (Fig. 7a, b).
The oscillators relax to a phase-locked state after a short transient
period, but the steady-state phases are shifted by an amount Δϑi. We
recall that a global phase shift is physically irrelevant and is henceforth
discarded. The response ∣Δϑi∣ crucially depends on the location of the
oscillator—being strongly suppressed across the community boundary
(Fig. 7a–d). To evaluate the impact of the network structure, we
quantify the overall network response by the variance of the phases
within a community C,

var ∣Δϑi∣C
� �

=
X
i2C

∣Δϑi∣
2 �

X
i2C

∣Δϑi∣

 !2

: ð21Þ

This overall response is generally suppressed in thenon-perturbed
community, for primal as well as for dual communities. The more
pronounced the community structure, the stronger the suppression
of the response (Fig. 7e). We note that for the current example
some differences exist between primal and dual communities.

Fig. 7 | Suppression of failure spreading in oscillator networks. a, bWe analyze
the response of a network of phase oscillators (Eq. (20)) to a localizedperturbation.
We consider a honeycomb lattice with a a primal community structure induced by
weak connectivity across the community boundary and b a dual community
structure induced by strong connectivity along the boundary. After the perturba-
tion the oscillators relax back to a phase-locked state with phases shifted by Δϑi.
c, d We find that the response ∣Δϑi∣ is strongly suppressed in the non-perturbed
community. e The overall network response is quantified by the variance of the

response within a network community (Eq. (21)). The response in the non-
perturbed community is strongly suppressed—the more pronounced the commu-
nity structure, the stronger the attenuation. The existence of a primal or dual
community structure is indicated by primal and dual Fiedler values λ2 (crosses) and
λ*2 (circles), respectively. The blue line represents themedian value and the shaded
regions indicate the 25 and 75% quantiles for different random realizations of the
natural frequencies ωi. The symbol c denotes a normalization constant used to
improve comparison with the response.
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In particular, statistic fluctuations are larger in the case of primal
communities.

We conclude that the impact of community boundaries, both
primal and dual, extends to all diffusively coupled networked systems.
Our finding can be further substantiated by a linear response analysis8,
which highlights the structural similarity to linear flow networks. Fur-
thermore, we note that related phenomena were observed for models
of information diffusion in networks of different modularity25. This
finding is closely related, as the diffusion model includes an averaging
over all adjacent nodes in the network.

Discussion
We have introduced a way to define and identify dual communities in
planargraphs.Wedemonstrated thatboth primal anddual community
structures emerge as different phases of optimized networks – whe-
ther the one or the other is realized in a given optimal network
depends on the degree of fluctuations. In addition to that, both types
of communities have the ability to suppress failure spreading. They
are thus optimized to limit the effect of edge failures or other
perturbations.

An important difference between primal and dual communities is
the fact that the former are based on a weak connectivity, while dual
communities require a strong connectivity. This has significant con-
sequences for supply networks such as power grids. Several approa-
ches have been discussed to limit the connectivity of power grids to
prevent the spreading of cascading failures. This includes concepts of
microgrids45 as well as intentional islanding46 or tree-partitioning47,48.
However, future power gridswill requiremore, not less connectivity to
transmit renewable energy over large distances 49,50. Dual communities
might resolve this conundrum, as they prevent failure spreading from
one community to the other one, without limiting the network’s ability
to transmit energy. This is in stark contrast to primal communities that
limit failure spreading from one community to the other one, but also
supply. Thus, the construction of dual communitiesmay also serve as a
strategy against failure spreading, in line with other ideas brought
forward recently33.

Dual communities may be detected using the same techniques
as for primal communities once the dual graph is constructed. We
here focus on classical spectral methods based on the graph Lapla-
cian, as this matrix naturally arises in the study of graph duality and
linear flow networks. By now, numerous algorithms for community
detection have been developed that outperform spectral methods
depending on the respective application5,51,52. All these algorithms
can be readily applied to the dual graph. A short analysis for a
selected example is provided in the Supplementary Information. One
challenge remains for the generalization of this approach. For planar
graphs, the dual is constructed by a straightforward geometric pro-
cedure. For non-planar graphs, a geometric analysis is much more
involved53. A dual can be constructed algebraically by choosing a
basis of the cycle space. However, there is no distinguished basis
such that the algebraic dual is not unique. The detailed analysis of
community boundaries, in particular the inequality (Eq. (12)), may
provide an alternative route to generalize the definition of network
communities. For instance, one may choose a decomposition to
minimize the dual topological connectivity μ*

2.
Finally, we note that other approaches have been put forward to

generalize the definition of network communities beyond the para-
digm of strongmutual connectivity. For instance, communities can be
defined in terms of the similarity of the connectivity of nodes (see, e.g.,
refs. 54, 55) or from spreading processes56. The graph dual approach
presented here emphasizes the role of the community boundaries,
both in the definition of the community structure and in its impact on
spreading processes and network robustness. Furthermore, graph
duality provides a rigorous algebraic justification for our general-
ization of community structures.

Methods
Global cascade model
In Fig. 1, we show results from a classic model of global cascades. The
state of each node i = 1,…,N in time step t is denoted as si(t)∈ {0, 1},
encodinghealthy/operational and infected/faulty, respectively. Anode
becomes infected/faulty in timestep t + 1 if theweighted average of the
neighboring nodes exceeds a threshold ϕi:

siðt + 1Þ=
1 if

P
k
wik skP
k
wik

>ϕi

1 if siðtÞ= 1
0 else:

8>><
>>: ð22Þ

This model is iterated until no further changes of the node
states occur.

We simulate this model on a square lattice with inhomoge-
neous edge weights. A fraction pe = 0.8 of edges connecting the
center nodes of the lattice with its nearest neighbors is selected at
random. The weight of these edges is set to wij =wℓ, where wℓ is a
tunable parameter, while all other edges have weight wij = 1. At time
t = 0, we choose a fraction ρ0 = 0.05 of all nodes in the left part and
set them to state 1, while all other nodes are in state 0. For each
value of the parameter wℓ, we repeat the simulation for 1000 ran-
dom initial conditions and record the fraction of nodes in state 1,
denoted as ρ∞.

Creation of dual graphs: planar networks
In this manuscript, we mostly restrict our analysis to planar, con-
nected graphs. A graph G = (V, E) with vertex set V and edge set E is
called planar if it may be drawn in the plane without two edges
crossing57. For a plane graph G, it is straightforward to establish a
duality to another graph, referred to as the plane dual or simply dual
graph and denoted as G*. The dual graph is constructed using the
cycles of graph G where a cycle is defined to be a path that starts and
ends in the same vertex consisting of otherwise distinct vertices. For
a graph with M edges and N nodes, these cycles form the graph’s
cycle space of dimension N* =M −N + 1. A particular basis of this
space is given by the faces of the plane embedding, such that the dual
graph G* = (V*, E*) has a vertex corresponding to each face. Two dual
vertices v*1 and v*2 are connected by a dual edge e* = ðv*1, v*2Þ 2 E*ðG*Þ if
the two corresponding cycles share an edge. For a weighted graph,
the edge weight of the dual edge is chosen to be the inverse of the
corresponding edge shared by the two cycles. Furthermore, we
adopt the following convention; if two cycles share k edges e1, . . , ek
with weights w1, . . . ,wk, we lump them together into a single dual
edge e* with edge weight w* =

Pk
i = 1 w

�1
i thus avoiding multi-edges in

the dual graph and refer to this model as the reduced dual graph.
Note that the definition of the edge-cycle incidencematrixC needs to
be adjusted for the reduced dual graph.

Creation of dual graphs: non-planar networks
For non-planar networks, the basis of the cycle spacemay no longer be
uniquely determined based on the graph’s embedding. Different basis
choices result in different dual graphs. When calculating the dual
graphof thenon-planar European topology shown in Fig. 5f–g,weused
the graphs’ minimum cycle basis to create the dual graph.

Hierarchical decomposition of dual graph
We assign m hierarchy levels based on repeated spectral bisection of
the dual graph using the following procedure:
1. Assign dual communities to the graph by making use of the Fie-

dler vector v*
2 of the dual graph G*

2. Identify the edges that lie on the boundary between the two
communities by checking for edges in the primal shared by faces
corresponding to dual nodes of both communities
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3. Remove the boundary edges from the graph thus creating two
primal subgraphs G1 and G2

4. Repeat the process m times

Building supply networks with fluctuating sources
Our framework extends the fluctuating sink model proposed by
Corson36 where a single, fluctuating source supplies the remain-
ing network. To this end, we consider a linear flow network with
sources and sinks attached to the nodes and model the sinks as
Gaussian random variables P 2 N ðμ,σÞ. In contrast to previous
work, we consider multiple sources, Ns in number, whose statis-
tics can be derived from the statistics of the sinks due to the fact
that the in- and outflows at the nodes need to sum to zero
(see Supplementary Information). We then add additional fluc-
tuations to the sources that are built using Dirichlet random
variables Xi ~ Dir(α). The fluctuations are constructed such that
they only influence the statistics of the sources and their variance
is tuned by a single parameter α. To be able to tune the influence
of this additive noise variable, we introduce a scale parameter
K 2 R. The inflow at a source at a given point in time is then given
by (see Supplementary Information)

Psi
= � 1

Ns

XN
i=Ns+ 1

Pi +K
1
Ns

� Xi

� �
, ð23Þ

where Pi are the outflows at the sinks. Here, we arranged the node
order such that the sources have indices 1,…,Ns and sinks are num-
bered as Ns + 1,…,N. To produce Fig. 5, we considered a network with
Ns = 2 and fix the parameters of the Gaussian distribution as μ = −1,
σ = 0.1. The scale parameter is set to K = 500 and the parameter α
controlling the statistics of the Dirichlet distribution is varied in the
interval α∈ [10−2, 104], thus changing the variance of the Dirichlet
variables σ2

D =K
2 ðNs�1Þ
N2

s ðNsα + 1Þ (see Supplementary Information).

Analysis of power grid datasets
The networks shown in Fig. 5f, g were determined using the open
energy system model ’PyPSA-Eur’ cost-optimizing the generation
infrastructure and operation as well as the transmission grid for dif-
ferent levels of carbon-dioxide emission reductions with respect to the
emission levels in 1990. For each target carbon-dioxide emission
reduction level, the network is optimized for an entire year with the
weather conditions of 2013 and 3-hourly resolution (see ref. 39 for
further details on the optimization model). To analyze the network
topology, we set the weight wℓ of a line ℓ to the maximal apparent
power that can flow through it. Note that this is different from
weighting the line by its line susceptance and allows us to also incor-
porate high-voltage DC lines. To determine the level of fluctuating
renewables shown in Fig. 5f, g, we calculate the share of the total
annual generation in the entire system that is produced by fluctuating
renewables. To this end,we assume that the following technologies are
fluctuating renewable energy sources: offshorewindAC, offshorewind
DC, onshore wind, run-of-the-river hydroelectricity (ror) and solar. In
Supplementary Figs. S3 and S4 we show as an example the generation
for twomonths and carbon emission reduction levels over time and on
the network level.

Data availability
The topology of the Central European power grid have been extracted
from the open European energy system model PyPSA-Eur39, which is
fully available online58. Leaf data was provided by the authors of ref. 59
and is available from the respective authors upon request. The leaf
venation networks are based on microscopic recordings. Edge con-
ductivities wij are assumed to scale with the radius rij of the corre-
sponding vein (i, j) as wij / r4ij according to the Hagen-Poisseuille law
(see ref. 60 for a detailed discussion). We used the radius in pixels at a

resolution of 6400 dpi. The data generated in this study (effective
topology of power grid networks and selected leaf venation networks)
as well as essential computer code for data processing have been
deposited in a Zenodo repository61.

Code availability
Computer code is available on github62 with the specific version used
in this publication being archived at Zenodo61.
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