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A new definition of the electromagnetic spatial densities for a spin-1=2 system is proposed and worked
out in the zero average momentum frame and in moving frames. The obtained results are compared with the
traditional definition of the densities in terms of the three-dimensional Fourier transforms of the
electromagnetic form factors in the Breit frame.
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I. INTRODUCTION

The three-dimensional Fourier transform of the charge
form factor in the Breit frame is often interpreted as the
electric charge density of the corresponding hadron, owing
to the seminal papers on electron-proton scattering by
Hofstadter, Sachs, and others in the 1960s [1–3]. Similar
interpretations have also been proposed for the Fourier
transforms of the gravitational form factors and for various
local distributions [4–6].
Despite common belief, the identification of spatial

density distributions with the Fourier transform of the
corresponding form factors in the Breit frame suffers from
conceptual issues as repeatedly pointed out in the literature
[7–13]. In Ref. [11], it was shown on the example of a spin-
0 system that the above-mentioned traditional expression
for the charge density in terms of the Breit frame distri-
bution follows only in the static limit of an infinitely heavy
particle. On the other hand, doubt has been raised that local
density distributions can even be defined unambiguously,
i.e., independently of the form of the wave packet, for
systems whose Compton wavelength is of the order of or
larger than the charge radius (defined via the derivative of
the form factor at zero momentum transfer) [11].
The issue of a proper definition of the spatial distribu-

tions of matrix elements of local operators has attracted

much attention in the last few years. For example, the light-
front approach allows one to define purely intrinsic spatial
densities, which have probabilistic interpretation, see
Refs. [7–10,14]. However, the corresponding densities
are obtained only as two-dimensional distributions in the
impact parameter space. The relationship between these
densities and the nonrelativistic three-dimensional distri-
butions in the Breit frame in terms of the Abel transform
was studied in Refs. [15,16]. Alternatively, the phase-space
approach [17–19] allows one to define fully relativistic and
unambiguous spatial densities, which in contrast to the
light-front ones are three dimensional. However, in view of
their dependence on both coordinates and momenta, these
densities cannot have a strict probabilistic interpretation.
The traditional Breit frame densities can also be obtained
from a phase-space perspective by setting the system in the
rest frame.
In the recent work of Ref. [20], the proper definition of

the three-dimensional charge density has been revisited for
a spin-0 system.1 Closely following the logic of Ref. [11],
the charge density possessing the usual probabilistic
interpretation has been defined in the zero average momen-
tum frame (ZAMF) of the system by using spherically
symmetric sharply localized wave packets without invok-
ing any approximations.2 The definition has also been
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1We thank Cedric Lorcé for pointing out that similar results
have been published long ago in Ref. [21].

2Under ZAMF we mean a Lorentz frame in which the
expectation value of the three-momentum for the state, specified
by the given packet, is zero. For wave packets with a sharp
localization around an eigenstate of the four-momentum operator,
the ZAMF coincides with the rest frame of the system.
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generalized to moving frames, and it was shown that in the
infinite-momentum frame (IMF), the charge density turns
into the well-known two-dimensional distribution in the
transverse plane times the delta function in the longitudinal
direction.
In the current paper we work out the details of the

new definition of the electromagnetic densities for
spin-1=2 systems. Analogously to the spin-0 case, we
consider sharply localized wave packets and obtain local
spatial distributions for the ZAMF as well as for moving
frames.
Our work is organized as follows, in Sec. II we consider

the spatial distributions of a spin-1=2 system in the ZAMF.
Section III is devoted to the moving frames. In Sec. IV, we
discuss the interpretation of the novel density distributions
and comment on the proton radius controversy. We end
with a summary in Sec. V.

II. THE ELECTROMAGNETIC DENSITIES OF A
SPIN-1=2 SYSTEM IN THE ZAMF

We start with considering the electromagnetic densities
of a spin-1=2 system in its ZAMF. We choose the four-
momentum eigenstates jp; si characterizing our system to
be normalized as

hp0; s0jp; si ¼ 2Eð2πÞ3δs0sδð3Þðp0 − pÞ; ð1Þ

wherep ¼ ðE;pÞ, withE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
andm the particle’s

mass. These states are also eigenstates of the charge operator
given by Q̂ ¼ R

d3rĵ0ðr; 0Þ, where ĵμðr; 0Þ is the electro-
magnetic current operator at t ¼ 0 in theHeisenberg picture.
The matrix elements of the electromagnetic current

operator between momentum eigenstates of a spin-1=2
system can be parametrized in terms of two form factors:

hp0; s0jĵμðr; 0Þjp; si ¼ e−iðp0−pÞ·rūðp0; s0Þ
�
γμF1ðq2Þ þ

1

2
iσμνqνF2ðq2Þ

�
uðp; sÞ; ð2Þ

with p and s (p0 and s0) denoting the momentum and the
polarization of the initial (final) states, respectively. The Dirac
spinors are normalized as ūðp; s0Þuðp; sÞ ¼ 2mδs0s. The
momentum transfer is given by q ¼ p0 − p, and F1ðq2Þ
and F2ðq2Þ are the Dirac and the Pauli form factors, respec-
tively. These are normalized asF1ð0Þ ¼ 1 andF2ð0Þ ¼ κ=m,
with κ being the anomalous magnetic moment of the
spin-1=2 particle. We point out the difference in the normali-
zation of the Pauli form factor compared to the literature.3

To define local electromagnetic densities we calculate
the matrix element of the current operator in a state
localized in coordinate space and take the size of the
localization much smaller than all length scales character-
izing the system. We consider a normalizable Heisenberg-
picture state written in terms of a wave packet as

jΦ;X; si ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð2πÞ3

p ϕðs;pÞe−ip·Xjp; si; ð3Þ

where from the normalization condition it follows thatZ
d3pjϕðs;pÞj2 ¼ 1: ð4Þ

Notice that the state jΦ;X; si depends on the
spatial translation vector X, whose interpretation will be
discussed later. We define the density distributions in the
ZAMF of the system by employing spherically symmetric
wave packets with spin-independent profile functions
ϕðs;pÞ ¼ ϕðpÞ ¼ ϕðjpjÞ. For nonsymmetric wave pack-
ets, the newly defined electromagnetic densities can gen-
erally not be made independent of the profile function.
However, the spherically symmetric choice of the wave
packet appears legitimate given the absence of a preferred
direction in the ZAMF. For later convenience, we introduce
a dimensionless profile function ϕ̃ via

ϕðpÞ ¼ R3=2ϕ̃ðRpÞ; ð5Þ

where R characterizes the size of the wave packet such that
sharp localization corresponds to small values of R. The
current density distribution for the state defined in Eq. (3)
takes the form

hΦ;X; s0jĵμðx; 0ÞjΦ;X; si ¼
Z

d3pd3p0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
4EE0p ūðp0; s0Þ

�
γμF1ðq2Þ þ

iσμνqν
2

F2ðq2Þ
�
uðp; sÞϕ⋆ðp0ÞϕðpÞeiq·ðX−xÞ: ð6Þ

Introducing r ¼ x −X, the current density distribution takes the form

3The factor 1=m in front of the form factor F2 appearing in commonly used parameterization mixes the orders of the 1=m expansion
used below.
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jμϕðrÞ≡hΦ;0;s0jĵμðr;0ÞjΦ;0;si

¼
Z

d3Pd3q

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
4EE0p ūðp0;s0Þ

�
γμF1ððE−E0Þ2−q2Þþiσμνqν

2
F2ððE−E0Þ2−q2Þ

�
uðp;sÞϕ

�
P−

q
2

�
ϕ⋆

�
Pþq

2

�
e−iq·r; ð7Þ

where P ¼ ðp0 þ pÞ=2, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2 − P · qþ q2=4

p
and E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2 þ P · qþ q2=4

p
.

The standard definition of the current density in terms of the form factors in the Breit frame, Fiðq2Þ ¼ Fið−q2Þ, which
we will refer to as “naive” following the terminology of Ref. [11], is obtained by first approximating the integrand in Eq. (7)
by the two leading terms in the 1=m expansion and subsequently localizing the wave packet by taking the limit R → 0
[11,12]. The 1=m expansion of the integrand leads to the following expressions:

J0ϕ;naiveðrÞ≡
Z

d3Pd3q
ð2πÞ3

�
F1ð−q2Þ − F2ð−q2Þ

�
q2

4m
−

i
2m

q · ðP × σÞ
��

ϕ

�
P −

q
2

�
ϕ⋆

�
Pþ q

2

�
e−iq·r;

Jϕ;naiveðrÞ≡ 1

m

Z
d3Pd3q
ð2πÞ3

�
PF1ð−q2Þ − F1ð−q2Þ þmF2ð−q2Þ

2
iq × σ

�
ϕ

�
P −

q
2

�
ϕ⋆

�
Pþ q

2

�
e−iq·r: ð8Þ

Here and in what follows, we use Jμ instead of jμ to indicate that these densities are written as operators in spin space rather
than the corresponding matrix elements. The R → 0 limit of the expressions in Eq. (8) can be calculated without specifying
the form factors and the profile function ϕðpÞ using the methods developed to analyze loop integrals in quantum field theory
[22,23]. For F1ðq2Þ and F2ðq2Þ decreasing at large q2 faster than 1=q2 and 1=ðq2Þ2, respectively, by using the method of
dimensional counting [22], the only nonvanishing contribution to Jμϕ;naiveðrÞ in the R → 0 limit is obtained by substituting

P ¼ P̃=R, expanding the integrands in Eq. (8) in R around R ¼ 0 and keeping up to the zeroth order terms. Doing so we
obtain

J0naiveðrÞ≡ lim
R→0

J0ϕ;naiveðrÞ ¼
Z

d3P̃d3q
ð2πÞ3

�
F1ð−q2Þ − F2ð−q2Þ

�
q2

4m
−
1

R
i
2m

q · ðP̃ × σÞ
��

jϕ̃ðP̃Þj2e−iq·r

¼
Z

d3q
ð2πÞ3 e

−iq·rGEð−q2Þ

≡ ρchnaiveðrÞ;

JnaiveðrÞ≡ lim
R→0

Jϕ;naiveðrÞ ¼
Z

d3P̃d3q
ð2πÞ3

�
P̃
mR

F1ð−q2Þ − iq × σ
2m

½F1ð−q2Þ þmF2ð−q2Þ�
�
jϕ̃ðP̃Þj2e−iq·r

¼ ∇r × σ
2m

Z
d3q
ð2πÞ3 e

−iq·rGMð−q2Þ

≡∇r ×MnaiveðrÞ; ð9Þ

where we employed the condition imposed on ϕ̃ in Eq. (4)
and used the fact that the integral over P̃ of an odd function
vanishes. Here, GEðq2Þ and GMðq2Þ refer to the Sachs
electric and magnetic form factors [2] (note again the
unconventional normalization of the Pauli form factor):

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m
F2ðq2Þ;

GMðq2Þ ¼ F1ðq2Þ þmF2ðq2Þ: ð10Þ

Owing to the classical expression for the magnetization
current JmagðrÞ ¼ ∇ ×MðrÞ, the vector-valued function
MnaiveðrÞ (an operator in the spin space) is interpreted as
the magnetization distribution of the spin-1=2 particle. In
the ZAMF of a spherically symmetric system, the spin

operator is the only available vector, and the function
MnaiveðrÞ is thus interpreted as the density of magnetic
dipoles. It is usually expressed in terms of a scalar
magnetization density ρmag

naiveðrÞ, which corresponds to the
Fourier transform of the magnetic form factor GM in the
Breit frame

MnaiveðrÞ ¼
1

2m
σρmag

naiveðrÞ;

ρmag
naiveðrÞ ¼

Z
d3q
ð2πÞ3 e

−iq·rGMð−q2Þ: ð11Þ

In the notation we employ, the charge and scalar magneti-
zation densities ρchnaiveðrÞ and ρmag

naiveðrÞ are normalized to 1
and to the magnetic moment μ ¼ 1þ κ of the particle,
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respectively. These two scalar densities incorporate the
complete information about the internal structure of a
composite spin-1=2 particle encoded in the electromagnetic
form factors.
Notice that the final expressions in Eq. (9) do not

depend on the shape of the wave packet (even if we would
not require the spherical symmetry for the profile func-
tion). They correspond to the leading approximation
to the spatial densities for packets localized with R
much bigger than the Compton wavelength 1=m while
much smaller than any other length scale characterizing
the system. Such a definition, however, becomes doubtful

for systems like light hadrons, whose characteristic
length scales are comparable to or smaller than the
Compton wavelength, see Ref. [11] and references
therein.
An alternative definition of spatial densities, applicable

to any systems, is obtained by localizing the wave packet
describing the particle under consideration without per-
forming a nonrelativistic expansion for the integrand in
Eq. (7). Using the method of dimensional counting, the
R → 0 limit in Eq. (7) can, in fact, be taken for arbitrary
(nonvanishing) values of the particle’s mass as discussed in
Ref. [20]. Doing so we obtain

J0ϕðrÞ ¼
Z

d3P̃d3q
ð2πÞ3

�
F1½ð ˆ̃P · qÞ2 − q2� þ i

2
q · ð ˆ̃P × σÞF2½ð ˆ̃P · qÞ2 − q2�

�
jϕ̃ðP̃Þj2e−iq·r;

JϕðrÞ ¼
Z

d3P̃d3q
ð2πÞ3

�
ˆ̃PF1½ð ˆ̃P · qÞ2 − q2� − i

2
ðq × σ − q × ˆ̃Pσ · ˆ̃PÞF2½ð ˆ̃P · qÞ2 − q2�

�
jϕ̃ðP̃Þj2e−iq·r; ð12Þ

where ˆ̃P ¼ P̃=P̃, with P̃≡ jP̃j. For spherically symmetric wave packets with ϕ̃ðP̃Þ ¼ ϕ̃ðjP̃jÞ, the integration over P̃ can be
easily performed using Eq. (4). Denoting α ¼ cos θ with θ being the angle between the vectors P̃ and q, we obtain

J0ðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·r
Z þ1

−1
dα

1

2
F1½ðα2 − 1Þq2�≡ ρ1ðrÞ;

JðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·r
Z þ1

−1

dα
2

�
αq̂F1½ðα2 − 1Þq2� − i

4
q × σð1þ α2ÞF2½ðα2 − 1Þq2�

�

¼ ∇r × σ
2m

Z
d3q
ð2πÞ3 e

−iq·r
Z þ1

−1
dα

1

4
ð1þ α2ÞmF2½ðα2 − 1Þq2�

≡∇r ×MðrÞ≡∇r × σ
2m

ρ2ðrÞ: ð13Þ

Notice that the first term in the curly brackets, being an odd
function in α, does not contribute to the density after
integrating over α. The spatial densities JμðrÞ defined above
are unambiguously expressed in terms of the experimen-
tally measurable form factors F1ðq2Þ and F2ðq2Þ meaning
that for the choice of the spherically symmetric wave
packet they do not depend on the specific functional form
of the profile function and further details of the wave
packet. However, in contrast to the naive definition in
Eq. (9), the validity of Eq. (13) does not depend on the
relationship between the Compton wavelength 1=m and
other length scales characterizing the system. In particular,
Eq. (13) can be also used to define the spatial densities of
light hadrons.
It is striking that the obtained result for JμðrÞ, expressed

in terms of the form factors F1ðq2Þ and F2ðq2Þ, does not
depend on the particle’s mass, similarly to the charge
density for a spinless system introduced in Ref. [20]. This
implies that the traditional expression for the density,

JμnaiveðrÞ, does not emerge from JμðrÞ by expanding about
the static limit. As explained in Ref. [20] for the case of a
spin-0 particle, this counterintuitive feature originates from
the noncommutativity of the R → 0 and m → ∞ limits of
JμϕðrÞ in Eq. (7). Notice that while a finite-order approxi-
mation in the 1=m-expansion is valid when calculating the
form factors in Eq. (2) provided −q2 ≪ m2, its validity is
violated in certain momentum regions when performing the
integration in Eq. (7) if R is taken of the order of the
Compton wavelength or smaller.
The ZAMF expression for the charge density ρ1ðrÞ in

Eq. (13) coincides with that of a scalar particle discussed in
Ref. [20]. Given that the state jΦ;x; si is an eigenstate of
the charge operator with an eigenvalue 1, both ρ1ðrÞ and
the naive charge density ρchnaiveðrÞ are normalized to 1.
On the other hand, ρ2ðrÞ is normalized to 2

3
κ rather than to

the magnetic moment 1þ κ as it is the case for the naive
magnetization density ρmag

naiveðrÞ. We will come back to this
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point in Sec. III, where a geometrical interpretation of the
obtained ZAMF densities will be given in terms of the
densities defined in the infinite-momentum frame. To
facilitate such an interpretation, it is instructive to rewrite
JμðrÞ, specified in Eq. (13), as

JμðrÞ ¼ 1

4π

Z
dn̂Jμn̂ðrÞ; ð14Þ

where n̂≡ n=jnj is a unit vector along the direction of the
vector P̃ in Eq. (12) and

J0n̂ðrÞ ¼ ρ1;n̂ðrÞ; Jn̂ðrÞ ¼
1

2m
∇r × σ⊥ρ2;n̂ðrÞ; ð15Þ

where

ρi;n̂ðrÞ ¼ ρiðr⊥ÞδðrkÞ; ð16Þ

and the two-dimensional auxiliary densities ρiðr⊥Þ are
defined in terms of the form factors Fiðq2Þ via

ρ1ðr⊥Þ ¼
Z

d2q⊥
ð2πÞ2 e

−iq⊥·r⊥F1ð−q2⊥Þ;

ρ2ðr⊥Þ ¼
Z

d2q⊥
ð2πÞ2 e

−iq⊥·r⊥mF2ð−q2⊥Þ: ð17Þ

Here and in what follows, ak ≡ a · n̂n̂ (a⊥ ≡ a − a·
n̂n̂ ¼ n̂ × ða × n̂Þ) denote the component of a vector a
parallel (perpendicular) to the vector n, and ak ≡ jakj,
a⊥ ≡ ja⊥j. Notice that the auxiliary densities ρi;n̂ðrÞ
depend on the direction n̂ only through the arguments
r⊥ and rk of the corresponding two-dimensional densities
and the delta function.

III. THE ELECTROMAGNETIC DENSITIES OF A
SPIN-1=2 SYSTEM IN MOVING FRAMES

To generalize the expressions in Eqs. (13) and (14) to
moving frames, we follow the procedure of Ref. [20] and
replace the packet in Eq. (7) with its boosted expression.
Using Eq. (3) and the transformation properties of the
momentum eigenstates under a boost Λv with velocity v,

jp; si!Λv UðΛvÞjp; si ¼
X
s1

Ds1s

�
W

�
Λv;

p
m

��
jΛvp; s1i;

ð18Þ
where Ds1s½W� is a spin-1=2 representation of the corre-
sponding Wigner rotation W [24], we express a normal-
izable Heisenberg-picture state located at the origin of a
moving frame in terms of the spherically symmetric ZAMF
quantity ϕðpÞ as (see also Ref. [25]):

jΦ;X; siv ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð2πÞ3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

�
1 −

v · p
E

�s
ϕðΛ−1

v pÞ
X
s1

Ds1s

�
W

�
Λv;

Λ−1
v p
m

��
e−ip·Xjp; s1i; ð19Þ

where γ ¼ ð1 − v2Þ−1=2, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, Λv is the Lorentz boost from the ZAMF to the moving frame and

Λ−1
v p ¼ v̂ × ðp × v̂Þ þ γðp · v̂ − vEÞv̂.
Analogously to the case of the ZAMF, using the method of dimensional counting we conclude that the only nonvanishing

contribution to the electromagnetic charge densities can be obtained by substituting P ¼ P̃=R, so that in the R → 0 limit for
the moving frame we obtain

J0ϕ;vðrÞ ¼
Z

d3P̃d3q
ð2πÞ3 γð1 − v · ˆ̃PÞ

�
F1½ð ˆ̃P · qÞ2 − q2� þ 1

4
ðq · Σv;m̂

ˆ̃P · σ − ˆ̃P · σq · Σv;m̂ÞF2½ð ˆ̃P · qÞ2 − q2�
�
jϕ̃ðP̃0Þj2e−iq·r;

Jϕ;vðrÞ ¼
Z

d3P̃d3q
ð2πÞ3 γð1 − v · ˆ̃PÞ

�
1

2
ðΣv;m̂

ˆ̃P · σ þ ˆ̃P · σΣv;m̂ÞF1½ð ˆ̃P · qÞ2 − q2�

−
i
4
q × ðΣv;m̂ − ˆ̃P · σΣv;m̂

ˆ̃P · σÞF2½ð ˆ̃P · qÞ2 − q2�
�
jϕ̃ðP̃0Þj2e−iq·r; ð20Þ

where we have introduced P̃0 ¼ v̂ × ðP̃ × v̂Þ þ γðP̃ · v̂ − vP̃Þv̂ and a unit vector m̂≡ ˆ̃P
0
. Furthermore, Σv;m̂ refers to the

Wigner rotated spin operator

Σv;m̂ ≡D†½WðΛv; m̂Þ�σD½WðΛv; m̂Þ�; ð21Þ

with
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D½WðΛv; m̂Þ� ¼ lim
R→0

D

�
W

�
Λv;

Λ−1
v ðP̃=RÞ
m

��
: ð22Þ

Next, we change the integration variable P̃ → P̃0 and define a vector valued function

nðv; m̂Þ ¼ v̂ × ðm̂ × v̂Þ þ γðm̂ · v̂ þ vÞv̂: ð23Þ

Given that P̃ ¼ v̂ × ðP̃0 × v̂Þ þ γðP̃0 · v̂ þ vP̃0Þv̂, it follows that n̂ ¼ ˆ̃P. It is easy to verify that the Jacobian of the change of
variables P̃ → P̃0 cancels the first factor in the integrands in Eq. (20), leading to

J0ϕ;vðrÞ ¼
Z

dm̂dP̃0d3q
ð2πÞ3 jϕ̃ðP̃0Þj2e−iq·r

�
F1½ðn̂ · qÞ2 − q2� þ 1

4
ðq · Σv;m̂n̂ · σ − n̂ · σq · Σv;m̂ÞF2½ðn̂ · qÞ2 − q2�

�
;

Jϕ;vðrÞ ¼
Z

dm̂dP̃0d3q
ð2πÞ3 jϕ̃ðP̃0Þj2e−iq·r

�
1

2
ðΣv;m̂n̂ · σ þ n̂ · σΣv;m̂ÞF1½ðn̂ · qÞ2 − q2�

−
i
4
q × ðΣv;m̂ − n̂ · σΣv;m̂n̂ · σÞF2½ðn̂ · qÞ2 − q2�

�
:

Using the spherical symmetry of ϕ̃ðP̃0Þ ¼ ϕ̃ðjP̃0jÞ and
Eq. (4), the integration over P̃0 becomes trivial. To keep
the notation compact, we express the resulting densities in
the form similar to Eq. (14):

JμvðrÞ ¼ 1

4π

Z
dm̂Jμv;m̂ðrÞ; ð24Þ

where

J0v;m̂ðrÞ ¼ ρ1;n̂ðrÞ þ
i
4m

∇r · ½Σv;m̂; n̂ · σ�−ρ2;n̂ðrÞ;

Jv;m̂ðrÞ ¼
1

2
½Σv;m̂; n̂ · σ�þρ1;n̂ðrÞ þ

1

4m
∇r

× ð½Σv;m̂; n̂ · σ�−n̂ · σÞρ2;n̂ðrÞ; ð25Þ

with ½A;B�� ≡ AB� BA and the auxiliary densities ρi;n̂ðrÞ
being defined in Eq. (16) with the superscripts ⊥ and k of
various vectors referring, as before, to the direction of n.
The above expressions simplify considerably in two

extreme cases. First, in the particle’s ZAMF with v ¼ 0 and
γ ¼ 1, we have nðv; m̂Þ ¼ m̂ and Σv;m̂ ¼ σ. Thus, one can
simply replace in Eq. (24) m̂ with n̂. Then, given Eq. (16),
the integration over n̂ of the second (first) term on the right-
hand side of the first (second) equality in Eq. (25) yields a
vanishing result, so that one encounters the expressions in
Eqs. (14)–(17).
The second interesting case corresponds to the infinite-

momentum frame (IMF) with v → 1 and γ → ∞, for which
the vector-valued function n̂ turns to v̂. Then, the integrand
in Eq. (24) depends on m̂ only through the Wigner rotation
matrices. Performing the integration over m̂, we obtain for
the spatial densities in the IMF

J0IMFðrÞ≡ J0v̂ðrÞ ¼ ρ1;v̂ðrÞ þ v̂ ·
∇r × σ⊥

4m
ρ2;v̂ðrÞ;

JIMFðrÞ≡ Jv̂ðrÞ ¼
∇r × σ⊥

4m
ρ2;v̂ðrÞ; ð26Þ

where the densities ρi;v̂ðrÞ are given in Eqs. (16) and (17)
with n̂ ¼ v̂. The appearance of δðrkÞ, see Eq. (16), reflects
the fact that in the IMF, the system is Lorentz contracted to
a two-dimensional object perpendicular to the velocity v̂ of
the moving frame. It thus makes sense to introduce two-
dimensional densities in the impact parameter space
spanned by r⊥ by integrating the three-dimensional den-
sities in Eq. (26) over rk:Z

drkJ0v̂ðrÞ ¼ ρ1ðr⊥Þ þ v̂ ·
∇r × σ⊥

4m
ρ2ðr⊥Þ;Z

drkJv̂ðrÞ ¼
∇r × σ⊥

4m
ρ2ðr⊥Þ: ð27Þ

Notice that the two-dimensional transverse charge and
magnetization densities of spin-1=2 particles in the IMF
have been extensively discussed in the literature, see, e.g.,
[26–28]. As for the expression in the last line of Eq. (27), the
quantity 1

2m ρ2ðr⊥Þ has been interpreted in Ref. [27] as a true
magnetization density of the system, which generates the
anomalous magnetic moment. On the other hand, Ref. [10]
argued that a more natural interpretation of the anomalous
magnetization density is provided by the distribution

ρ̃2ðr⊥Þ ¼ −
1

2m
ry
∂ρ2ðr⊥Þ
∂ry

; ð28Þ

where ry is a component of r that is perpendicular to both v
and σ⊥. Clearly, both densities 1

2m ρ2ðr⊥Þ and ρ̃2ðr⊥Þ are
normalized to the anomalousmagneticmoment of the particle.
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IV. DISCUSSION AND INTERPRETATION

Before discussing the interpretation of the obtained
results, it is useful to briefly summarize what has been
achieved so far. Starting from a general matrix element of
the electromagnetic current operator ĵμðx; 0Þ in a wave-
packet state jΦ;X; si of a composite spin-1=2 system in the
ZAMF, defined via a spherically symmetric profile function
ϕðpÞ, we have taken the limit of a sharp localization, R → 0
in order to remove the information about the wave packet,
thereby obtaining the corresponding spatial density JμðrÞ.
The resulting expression in the first line of Eq. (13) relates
the charge density J0ðrÞ≡ ρ1ðrÞ to the Dirac form factor
F1ðq2Þ, while the current distribution JðrÞ is expressed in
terms of the scalar magnetization density ρ2ðrÞ related to
the Pauli form factor F2ðq2Þ. These expressions for the
charge and current densities differ from the conventional
ones given in terms of the Fourier transform of the Sachs
form factors in the Breit frame, see Eqs. (9) and (11).
This raises questions about the uniqueness of our
results, their relation to the conventional densities and
physical interpretation, which will be addressed below. To
keep the discussion as transparent as possible, we focus in
the following on a spin-0 system considered in Ref. [20]
(but the arguments hold for spin-1=2 particles as well).
The charge densities ρðrÞ and ρnaiveðrÞ of Ref. [20]
for a spinless system coincide with ρ1ðrÞ and ρchnaiveðrÞ of
this paper if one sets F1ðq2Þ≡ Fðq2Þ and F2ðq2Þ ¼ 0.
To uncover the meaning of the charge distribution we

need to identify the way it can be probed experimentally,
and we usually think of elastic lepton scattering. For an
infinitely heavy system described by a static charge
distribution ρnaiveðrÞ, there are no recoil effects, and the
differential cross section in the single-photon approxima-
tion is given by the Mott cross section for scattering off a
pointlike charge times jFð−q2Þj, see, e.g., [29] for a
textbook discussion. This exact result provides the means
for directly accessing ρnaiveðrÞ experimentally, and it runs
deep in our way of visualizing and interpreting the charge
distribution of a composite system in nonrelativistic,
quantum mechanical settings as common in atomic,
nuclear, and solid-states physics. Notice that the static
limit actually corresponds to the limit of c → ∞, in which
the Lorentz group reduces to the Galilean one, so that the
charge distribution ρnaiveðrÞ becomes frame independent.
Clearly, the static limit is merely an idealization that can

be imposed to approximate low-energy dynamics of
composite systems. Contrary to what is sometimes claimed
in the literature, see, e.g., [29], the Breit distribution
ρnaiveðrÞ cannot be interpreted as the intrinsic charge
density of the system beyond the strict static limit [20].
While it is possible to perturbatively (i.e., based on the
1=m-expansion) take into account corrections beyond the
static limit using an alternative definition of the charge
density with the wave packet localized at distances well

above its Compton wavelength [11], the resulting spatial
distribution does not entirely reflect the internal structure
of the system, being dependent on the wave packet. The
usefulness of such a definition of the charge density thus
relies on the Compton wavelength being much smaller than
the size of the system as determined by the charge
radius [11].
In contrast, the charge density defined using sharply

localized spherically symmetric wave packets as done here
and in Ref. [20] is valid for any massive system, regardless
of the relationship between the Compton wavelength and
the characteristic scale of the system related to the charge
radius. Moreover, the resulting charge distribution ρðrÞ
comes out to be independent of the particle’s mass, which
implies that ρnaiveðrÞ ≠ limm→∞ ρðrÞ and makes the static
picture described above inappropriate for the interpretation
of ρðrÞ. More precisely, the large momentum components
of the wave packet play a crucial role in the definition of the
charge density ρðrÞ, which thus represents an intrinsically
relativistic quantity. Remarkably, imposing the sharp locali-
zation limit in the definition of the charge density forces
one to think of ρðrÞ in a holographiclike picture in terms of
a continuous superposition of images taken in all possible
IMF [20]. The usual nonrelativistic interpretation of the
rest-frame charge distribution of a heavy system charac-
terized by the density ρðrÞ can only be obtained by
reconstructing ρnaiveðrÞ from ρðrÞ.
The above-mentioned holographiclike relationship

between the ZAMF and IMF distributions also holds for
the electromagnetic densities of a spin-1=2 particle con-
sidered in this paper. Comparing Eqs. (14) and (15) to
Eq. (26), one observes that the spatial current densities
JμðrÞ in the ZAMF are given by integrating the three-
dimensional IMF densities Jμv̂ðrÞ over all possible direc-
tions:

J0ðrÞ¼ 1

4π

Z
dv̂J0v̂ðrÞ; JðrÞ¼2×

1

4π

Z
dv̂Jv̂ðrÞ: ð29Þ

This feature can be understood already by looking at the
defining expressions for the densities in Eq. (7): taking the
limit R → 0 to remove the information about the spheri-
cally symmetric wave packet profile function from the
definition of the densities brings the integrands in Eq. (7) to
the kinematics with the total momentum jPj being larger
than all other momentum scales, which in turn corresponds
to the IMF (up to the Wigner rotations). In the IMF, the
system is Lorentz-contracted to essentially a two-
dimensional object perpendicular to the velocity of the
moving frame with the densities given in Eq. (26). While
only such two-dimensional images of the system are
observed in the IMF, the expression in the ZAMF recon-
structs the full three-dimensional structure by putting
together all possible two-dimensional “images.” In general,
the full image of a d-dimensional object can be
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reconstructed by putting together its all possible d − 1
dimensional images. This kind of representation is possible
for all positive integers d > 1. We further emphasize that
the extra factor of 2 that appears in the second equality in
Eq. (29) has its origin in the Wigner rotations of spin states
when performing Lorentz boosts to the IMF. From our
point of view this picture makes intuitively clear why the
spherical symmetry of the wave packet, in which the state is
prepared, and its independence of the spin polarization play
important role in the approach we used in this paper.
Without these two assumptions the defined densities of
Eq. (12) would depend on the information about the profile
function ϕðp; sÞ of the packet, and hence definitely would
not correspond to intrinsic distributions. Taking nonsym-
metric packets would be analogous to trying to reconstruct
a three-dimensional image of an object by putting together
two-dimensional pictures from all possible directions taken
with different coefficients of magnification for different
directions. The resulting three-dimensional image would
be distorted compared to the true image of the object.
Notice here that charge densities defined in the light front
[7–10,14] and the phase-space [17–19] approaches do not
depend on any assumptions about the wave packets.
It is worth mentioning that the second moment of the

charge distribution ρðrÞ, the quantity that should be
interpreted as the mean square charge radius of the system,
is related to the form factor slope via4

hr2i ¼ 4F0
1ð0Þ; ð30Þ

where the prime denotes differentiation with respect to q2.
This is in contrast to the usual relationship

hr2inaive ¼ 6

�
F0
1ð0Þ þ

F2ð0Þ
4m

�
; ð31Þ

motivated by the static definition ρchnaiveðrÞ. Thus, the size
of, e.g., the proton measured by the new charge distribution

ρ1ðrÞ is
ffiffiffiffiffiffiffiffi
hr2pi

q
¼ 0.62649 fm, which differs fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hr2pinaive
q

¼ 0.8409ð4Þ fm [30,31]. This discrepancy,

however, has no practical implications since the radius
extracted from electron-proton scattering as well as
from electronic and muonic hydrogen is defined based
on the expansion of the electric Sachs form factor around
q2 ¼ 0,

GEðq2Þ ¼ GEð0Þ
�
1þ q2

hr2i
6

þ…

�
; ð32Þ

which is consistently used in the theory underlying
these processes. What we have shown is that the radius
defined via sharply localized packets, is indeed smaller due
to the squeezing of the density already explained in
Ref. [20]. This also applies to the magnetic radius related
to the slope of the Pauli form factor at zero momentum
transfer.
Finally, as the charge and magnetization densities are

given in terms of r ¼ x −X,X should be interpreted as the
position of the charge and magnetization centers of the
system.

V. SUMMARY AND CONCLUSIONS

Using the prescription introduced in Ref. [20], we
worked out the details of the new definition of spatial
distributions of the electromagnetic current for composite
spin-1=2 systems. We obtained relationships between the
form factors and the local densities in the ZAMF and
moving frames. Our definition is applicable to any system,
irrespective of the relation between the Compton
wavelength and other length scales characterizing the
system. We have also worked out the expressions for the
electromagnetic densities in moving frames including
IMF. Similarly to the charge density of a spin-0 system
studied in Ref. [20], the obtained electromagnetic spatial
distributions possess a holographiclike interpretation in
terms of the two-dimensional images made in all pos-
sible IMF.
We also explored an alternative way to define the spatial

densities by employing the static approximation as sug-
gested in Ref. [11], thereby recovering the conventional
expressions in terms of the Fourier transform of the Sachs
form factors in the Breit frame. Comparing the two
definitions, we find that the static distributions cannot be
obtained as a systematic approximation to our exact
expressions. This is due to noncommutativity of the limits
of an infinitely heavy system and a sharply localized
packet.
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We thank Cédric Lorcé for useful comments on the
manuscript. This work was supported in part by BMBF
(Grant No. 05P18PCFP1), by DFG and NSFC through
funds provided to the Sino-German CRC 110 “Symmetries
and the Emergence of Structure in QCD” (NSFC Grant
No. 11621131001, DFG Project-ID 196253076—TRR
110), by ERC NuclearTheory (Grant No. 885150) and
ERC EXOTIC (Grant No. 101018170), by CAS through a
President’s International Fellowship Initiative (PIFI) (Grant
No. 2018DM0034), by the VolkswagenStiftung (Grant
No. 93562), and by the EU Horizon 2020 research and
innovation programme (STRONG-2020, Grant Agreement
No. 824093).

4The same expression was obtained in Ref. [12] for the mean
square charge radius of the system defined in two-dimensional
light-front dynamics.

PANTELEEVA, EPELBAUM, GEGELIA, and MEIßNER PHYS. REV. D 106, 056019 (2022)

056019-8



[1] R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod.
Phys. 30, 482 (1958).

[2] F. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119,
1105 (1960).

[3] R. G. Sachs, Phys. Rev. 126, 2256 (1962).
[4] M. V. Polyakov and A. G. Shuvaev, arXiv:hep-ph/0207153.
[5] M. V. Polyakov, Phys. Lett. B 555, 57 (2003).
[6] M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33,

1830025 (2018).
[7] M. Burkardt, Phys. Rev. D 62, 071503(R) (2000); 66,

119903(E) (2002).
[8] G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
[9] G. A. Miller, Phys. Rev. C 79, 055204 (2009).

[10] G. A. Miller, Annu. Rev. Nucl. Part. Sci. 60, 1 (2010).
[11] R. L. Jaffe, Phys. Rev. D 103, 016017 (2021).
[12] G. A. Miller, Phys. Rev. C 99, 035202 (2019).
[13] A. Freese and G. A. Miller, Phys. Rev. D 103, 094023

(2021).
[14] Y. Guo, X. Ji, and K. Shiells, Nucl. Phys. B969, 115440

(2021).
[15] J. Y. Panteleeva and M. V. Polyakov, Phys. Rev. D 104,

014008 (2021).
[16] A. Freese and G. A. Miller, Phys. Rev. D 105, 014003

(2022).
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