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The large variability of renewable power sources is a central challenge in the transition to a sustainable
energy system. Electricity markets are central for the coordination of electric power generation. These
markets rely evermore on short-term trading to facilitate the balancing of power generation and demand
and to enable systems integration of small producers. Electricity prices in these spot markets show pro-
nounced fluctuations, featuring extreme peaks as well as occasional negative prices. In this article, we
analyze electricity price time series from the European Power Exchange market, in particular the hourly
day-ahead, hourly intraday, and 15-min intraday market prices. We quantify the fluctuations, correlations,
and extreme events and reveal different time scales in the dynamics of the market. The short-term fluc-
tuations show remarkably different characteristics for time scales below and above 12 h. Fluctuations are
strongly correlated and persistent below 12 h, which contributes to extreme price events and a strong
multifractal behavior. On longer time scales, they get anticorrelated and price time series revert to their
mean, witnessed by a stark decrease of the Hurst coefficient after 12 h. The long-term behavior is strongly
influenced by the evolution of a large-scale weather pattern with a typical time scale of four days. We elu-
cidate this dependence in detail using a classification into circulation weather types. The separation in time
scales enables a superstatistical treatment, which confirms the characteristic time scale of four days, and
motivates the use of q-Gaussian distributions as the best fit to the empiric distribution of electricity prices.

DOI: 10.1103/PRXEnergy.1.013002

I. INTRODUCTION

Human reliance on electric power has fostered the devel-
opment of a large set of technological advances [1]. The
need to mitigate climate change has, on the one hand,
greatly increased the need for low or zero-emission power
generation [2], and on the other hand, opened up the elec-
tricity markets to small renewable energy power producers
[3–8]. Particularly, the short-term markets facilitated the
integration of the smaller power producers [9], and have
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introduced considerable changes to the economic aspects
and regulations of electricity markets [10,11]. For most
power systems, electricity markets are used to trading gen-
erated power and guarantee that the consumed power is
matched at every point in time [12]. Particularly in open
electricity markets—and for our study here, the European
market—the price of electricity is settled on the electric-
ity power exchange (EPEX SPOT) [13]. In the European
electricity exchange markets, several different products can
be traded, with very different delivery targets and dura-
tion. Particularly on the time scale of days to minutes,
there are the day-ahead and intraday markets [14], where
most renewable energy producers participate. On the day-
ahead market, auction-type products can be traded up to
12 h before the delivery of power. On the intraday mar-
kets, continuous-type products are traded up to 5 min
before delivery [15,16]. Electricity prices are intrinsically
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coupled in these markets. The day-ahead markets set an
initial value for trading electricity in the intraday market.

From their launch at the beginning of 2010, several stud-
ies on the influence, benefits and drawbacks, and impact
of short-term electricity markets have been made [7,9,17].
The need for more accurate forecasting models has also
lead to a recent, more close examination of the intraday
market prices [15,18–22]. In this study, we consider a com-
plex systems approach to price dynamics in the purview
of stochastic processes and examine the interplay between
quarter-hourly and hourly price time series, as well as
their connection to large weather patterns [23]. We aim
at unveiling the characteristic time scales of electricity
price time series from a data-driven perspective. In this,
we focus on price dynamics as a complex stochastic pro-
cess and analyze characteristic metrics in the context of
complex systems [24,25]. Particularly, we try to answer
the questions: what probability distributions do time series
show, and to what extent do they differ from Gaussian
processes? What are the reasons for these deviations? Are
price time series stationary processes? If not, do they show
distinct time scales? What about stochastic memory and
multifractality? Can we quantify those and link them back
to how each distinct market works? And how are they
influenced by the weather? In this work we address some
of these questions, particularly attempting to link the vari-
ous complex behaviors that price time series exhibit—such
as multifractality and long-range dependence—to three
distinct time scales that we extract from the data.

One should note that electricity prices, unlike most other
commodities prices, are distinct in, for example, having
not-so-infrequent negative values, being mean reverting,
i.e., returning to some base price after fluctuations, and
having pronounced cycles coupled to the generation or
consumption of energy, particularly day-night cycles, and
other human activities [18,26]. Being distinctively differ-
ent from other prices, electricity prices, especially intraday
prices, have not been extensively analyzed from a complex
systems’ perspective [27,28]. An examination of the mul-
tifractal properties of electricity price time series is also
scarce in the literature [29,30]. We employ the model-free
Hilbert-Huang transform (empirical mode decomposition)
to remove nonstationarities from price time series [31].
We use multifractal detrended fluctuation analysis [32–36]
to explain: (i) the time scale separation of the quarter-
hourly market below 12 h and different persistence in the
prices; (ii) the anchoring of fast transitions by the day-
ahead hourly market at the time scale of 12 to 48 h and
the coalescence of precision of all time series [37,38]. We
also employ superstatistical methods [39–41] to unveil the
longer time scale of prices equilibrium at roughly 96 h and
obtain the entropic indices of each time series—a measure
of the strength of nonstationarities—which all differ from
1 [42–45]. These results support the fact that the statis-
tics of electricity price time series follow a q-Gaussian

distribution [46–48]. The methods employed aim to extract
the various mentioned features and time scales solely from
the price data, without any other exogenous information.
As a final step, we examine circulation weather types data
[49,50], which comprise an objective measure of the state
of the flow over Central Europe, particularly describing the
strength of the wind. We show that the prices are inextrica-
bly related to large weather parameters, and their statistics
change considerably between calmer and strong wind con-
ditions, further justifying our superstatistical approach to
price dynamics.

This article is organized as follows. Section II provides
a short background on the European electricity markets.
Section III is comprised of five subsections: Sec. III A dis-
cusses the aspects of nonstationarity in price time series
and how to deal with them; Sec. III B explains the statis-
tics of price time series and introduces a candidate model
to explain these; Sec. III C discusses simultaneously the
intrinsic correlation and persistence in price time series,
unveiling our short-term time scale, as well as the rapid
jumps in prices, unveiling our midterm time scale; Sec.
III D addresses the change of statistics over time, unveil-
ing our long-term time scale in price time series, and offers
a justification for the aforementioned candidate model for
price time series statistics; Sec. III E covers an analysis of
the connection between large-scale weather patterns and
the changes in statistical properties of the price time series.
Section IV provides a set of concluding comments on the
results.

II. BACKGROUND

A major portion of the Continental European electricity
is traded at the European Energy Exchange (EEX). For the
case of Germany and Austria, electricity spot market and
over-the counter trading takes place at the European Power
Exchange (EPEX SPOT) [13], which is a subsidiary of the
EEX. This market is used particularly to balance the daily
changes of power in Continental Europe, as well as the
very short quarter-hourly and hourly imbalances in power
generation and consumption [51].

On futures markets, electricity is often traded weeks,
months, or even years before the actual delivery of elec-
tricity [52]. In contrast to other markets, the supply and
demand of electricity has to be met at each point in time to
guarantee a stable power system. While the future demand
can be approximated by experience using, for example,
the standard load profiles, some deviations might become
apparent when getting closer to the date of delivery [53].
Additionally, due to the weather-dependent nature of the
increasing share of wind and solar energy resources, it is
not possible for a producer to precisely predict the amount
of electricity that will be produced at a time in the future
[54,55]. Thus, shorter-term trading is needed and takes
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place on the spot markets, making these markets essential
instruments for renewable energy source producers.

In Europe, the trading on these shortest time scales is
done on the day-ahead and intraday market. The time
series of three intrinsically connected electricity prices
from the spot markets are studied in this article: the day-
ahead hourly price time series, the intraday hourly price
time series, and the intraday quarter-hourly price time
series. Two distinct market schemes are present here: (i)
the day-ahead or auction market, on which offers can be
placed up to 12:00 (noon) prior to the day of effect for
the hourly products; (ii) the intraday or continuous mar-
ket, on which offers for the subsequent day may be placed
from 15:00 (16:00 for quarter-hourly products) of the prior
day up to 5 min before the respective trading block. While
the last successful bid determines the market clearing price
that has to be paid by everyone in the case of the day-
ahead market, the intraday market prices are given by a
pay-as-bid principle. In this sense, the intraday market is
intrinsically coupled with the day-ahead market, as the
day-ahead clearing price serves as a first price reference
for the prices in the intraday market.

Since the trading on the intraday market exists to clear
the mismatch that remains after trading on the day-ahead
market is finished, it is a smaller market in volume but
still an essential one in ensuring the stable operation of
the power system. The volume of trade in 2019 of the
day-ahead market totalled 501.6 TWh and of the intraday
market totalled 83.2 TWh [57].

The implementation of the quarter-hourly blocks of trad-
ing in 2011 for intraday trading, and the extension in
2014 to day-ahead trading, were designed to deal with the
increase in renewable energy source input, such as solar
and wind energies, which introduces stronger fluctuations
in power-grid systems. Likewise, these short window mar-
kets invited various smaller energy producers, particularly
of renewable energies, to participate in the market, as they
can now trade in time margins wherein they know they
can generate the necessary electric power. Furthermore,
the introduction of short trading periods contributes to the
improvement of power-grid frequency stability [58–60].

III. ELECTRICITY PRICE TIME SERIES
ANALYSIS

A. Long-term nonstationarity

The dynamics of electricity prices is closely connected
to the dynamics of the load and the renewable genera-
tion. In fact, a rough estimate for the price p at a time
t can be obtained from the balance equation of gener-
ation and demand, Gr(t) + Gd(p) = D(t). Here, Gd(p)

denotes the supply curve of the dispatchable generation,
also called the merit-order curve [6,61,62]. The demand
D(t) and the renewable generation Gr(t) vary strongly in
time, whereas the dependence on the price is negligible,

i.e., the demand is inelastic. Solving for the average price
yields p̄(t) ≈ G−1

d [D(t) − Gr(t)], i.e., the price dynamics
is mainly driven by the load minus the intermittent renew-
able generation, commonly referred to as the residual load
(Fig. 1). The residual load shows a pronounced weekly and
seasonal pattern and a strong variability on the synoptic
scale [63]. It must be kept in mind that this is only a rough
estimate, which cannot explain many details, such as the
occurrence of negative prices.

Electricity prices in any exchange market are influenced
by both short- and long-term trends, particularly those
reliant on renewable energy sources. In a single day, elec-
tricity prices tend to be lower at night. The price is also
often lower during weekends due to lower consumption
[64]. When looking at a longer time period, a more distinct
scale emerges: a seasonal and yearly scale [65]. The aver-
age price of electricity fluctuates at the level of months,
usually culminating in the largest average prices occurring
by the end of the year. These fluctuations make the aver-
age of price time series change slowly over the years, e.g.,
the day-ahead market has seen a variation of the average
price from 31.6 EUR/MWh in 2015, 29.0 EUR/MWh in
2016, 34.2 EUR/MWh in 2017, 44.5 EUR/MWh in 2018,
to 37.7 EUR/MWh in 2019.

In this work, we deal with variations of price time series
on different time scales, from scales of �t < 12 h to scales
of �t ∼ 4 days and longer. Long-term changes, as those
described above, affect the statistics of the time series [66].
These changes are well understood, yet present a difficult
task if we are interested in understanding the fundamental
nature and statistics of price time series. Take the simple

20 40 60
Residual load (GWh)

−60

0

60

120

180

p
(E

U
R

/M
W

h)

1

2

5

10

20

50

100

200

E
ve

nt
s

Day Ahead

FIG. 1. The electricity price strongly depends of the residual
load. The figure shows a joint histogram of the price p(t) in the
day-ahead hourly market and the residual load, i.e., the differ-
ence between the load and renewable generation D(t) − Gr(t)
in a colormap plot with a logarithmic scale. Assuming a per-
fect market equilibrium, prices would be given by the function
p̄(t) ≈ G−1

d [D(t) − Gr(t)], which can be approximated by a lin-
ear function (dotted red line). The fluctuations, i.e., deviations
from the line, are evident, as well as occasional extreme events.
Data from EPEX, 2015–2019 [13].
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FIG. 2. The three electricity price time series examined in this study, from January 2015 to December 2019. The average fluctuations
around a mean value are visible, as well as occasional jumps into either very large or possibly negative prices. The three black curves
display the three slowest intrinsic mode functions (IMFs) obtained via the Hilbert-Huang transform, which are subtracted from the
data to remove the long-term nonstationarity. Data from EPEX, 2015–2019 [13]. Figures generated with PYTHON’s Matplotlib [56].

example of the variation of the average of the day-ahead
price: this implies that examining an aggregated probabil-
ity distribution of all five years of data will not capture the
changes of the average price values that happen yearly.

In order to investigate the short-term variability, long-
term trends and periodicities must be separated from the
time series. To this end, we employ a model-free detrend-
ing method to remove the slowest trends in the data. We
use the model-free Hilbert-Huang transform (empirical
mode decomposition) method to extract these variations
[31,67,68]. The Hilbert-Huang transform extracts a set of
intrinsic mode functions (IMFs) from the (nonstationary)
price time series. This is achieved via an iterative process
of obtaining the set of local minima and maxima of the data
and connecting each set via cubic splines, forming an enve-
lope around the time series. Subsequently, find the middle
curve equidistant to the upper (maxima) and lower (min-
ima) envelope. This is the first IMF. Subtract this from the
actual time series and repeat the procedure to uncover the
subsequent IMFs, until the data are solely left with a sin-
gle residual trend. One of the main advantages of using the
Hilbert-Huang transform is that it can handle nonstationary
and nonperiodic trends, unlike a Fourier decomposition.

In Fig. 2, the full set of five years of data of the three
examined time series is displayed, alongside the three
slowest IMFs, i.e., the larger wavelength IMFs, which we
use to remove the long-term trend. The data of the day-
ahead hourly price, intraday hourly, and intraday quarter-
hourly price show small diffusivelike fluctuations as well
as large excursions or jumps. From hereon, we work with
the detrended data from which the three lowest IMFs have
been removed unless stated otherwise.

B. Statistics of electricity price and electricity price
increment time series

Having removed the long-term trends of the data, we
now examine the statistics of the data in more detail. In

Fig. 2, we observe large excursions of the prices, some-
times even leading to negative prices for all considered
time series. A common method to quantify the dynamics of
price time series is to examine the probability distribution
or probability density function, as shown in Fig. 3. One can
clearly observe that the data are not described by a Gaus-
sian distribution. To examine the impact of the heavy tails
of the price distributions, we examine the fourth central
moment of the price probability distributions, the kurtosis.
The kurtosis of a random variable, or in our case, a price
time series X is given by

κX = E

[(
X − μX

σX

)4]
= E[(X − μX )4]

{E[(X − μX )2]}2 , (1)

with E[·] denotes the expected value, μX the mean value
of X , and σ 2

X the variance of X . For example, a Gaussian
or normal distribution has a kurtosis of κX = 3. Any dis-
tribution with a kurtosis κX > 3 is considered heavy tailed
and is called leptokurtic. Conversely, if a distribution has a
kurtosis κX < 3, it is called platykurtic.

TABLE I. Kullback-Leibler divergence DKL(p|·) of the empir-
ical distributions of the three price time series relative to the
two candidate distributions: the Lévy symmetric α-stable dis-
tribution Lα,c,μ given in Eq. (2) and the q-Gaussian distribution
Gq,c,μ given in Eq. (3). The q-Gaussian distribution minimizes
the Kullback-Leibler divergence DKL for all price time series,
indicated in bold. The α and q values of the distributions are
given as per the best fit.

α-stable q-Gaussian

DKL(p|·) α DKL(p|·) q

Day ahead 0.013 1.61 0.012 1.46
Intraday hourly 0.016 1.54 0.014 1.50
Intraday quarterly 0.012 1.61 0.011 1.46
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FIG. 3. Empirical distributions of the detrended price time series. Each empirical distribution is fitted via a maximum likelihood
algorithm [69,70] with a q-Gaussian and a symmetric α-stable distribution, given by Eqs. (3) and (2), respectively. The q-Gaussian
distributions yield a better fit than the α-stable distributions, yielding q = 1.46 for the day-ahead, q = 1.50 for the intraday hourly,
and q = 1.46 for the intraday quarterly prices. The Kullback-Leibler divergence of the empirical and fitted distributions are given in
Table I, where one can see that the q-Gaussian distribution is the best at describing the empiric price time series. Mean μ, standard
deviation σ , skewness s, and kurtosis κ of the empiric data are given in each figure.

Electricity price time series feature pronounced jumps
clearly visible in the data (Fig. 2). Hence, the statistics
of the electricity prices cannot be expected to be well
described by a Gaussian. Instead, we expect the distribu-
tion to be leptokurtic, i.e., to have a kurtosis κX larger than
3. In Fig. 3 we display the probability density function
ρ(p) of the three detrended price time series (here with
a mean close to zero given the detrending performed pre-
viously). The heavy tails are clearly visible on a semilog-
arithmic scale, where a Gaussian distribution would look
like an inverted parabola. This finding raises the question
of what statistics is more suitable to capture the statistical
features of electricity prices.

A description of the price time series as a Gaussian pro-
cess is therefore not suitable, as the empirical distributions
of the price time series are highly leptokurtic. As there is no
a priori model for these types of data, we begin by exam-
ining the adequacy of describing the data’s distribution via
two classical distributions: Lévy α-stable distributions [71]
and q-Gaussian distributions [72]. These two are chosen
for being potentially very leptokurtic distributions, just like
the empirical distribution of the data suggests.

The symmetric Lévy α-stable distribution has no closed
formula for the probability density function Lα,c,μ(x), but it
can be expressed via its characteristic function (the Fourier
transform of its probability density function) via

Lα,c,μ(x) = 1
2π

∫ ∞

−∞
ϕα,c,μ(t)e−ixt dt

with ϕα,c,μ(t) = exp(itμ − |ct|α).
(2)

Here we focus only on symmetric (and zero mean μ =
0) α-stable distributions, but more general asymmetric
α-stable distributions exist [73].

A q-Gaussian distribution is a three-parameter distribu-
tion with a probability density function Gq,c,μ(x) given by

[72,74,75]

Gq,c,μ(x) =
√

c
Nq

eq(−c(x − μ)2), (3)

where eq(·) is the q exponential given by

eq(x) = [1 + (1 − q)x]1/1−q (4)

and Nq is a normalization constant given by

Nq =
√

π	((3 − q)/[2(q − 1)])√
q − 1 	(1/(1 − q))

for 1 < q < 3, (5)

where 	(·) is the Gamma function, 	(n) = (n − 1)! if
n ∈ N. Note that these two distributions converge to a nor-
mal distribution N when q → 1 or α → 2, respectively,
i.e., L2,c,0 = G1,c,0 = N (0, 1/c). Here we have expressed
these two distributions in a comparable way. The main
interest for us is to ascertain the heavy tailedness of the dis-
tribution, which is described by the value of q > 1 for the
q-Gaussian distribution, and the value of α < 2 for the α-
stable distribution. The parameter c is the scale, somewhat
related to the variance. Note that Lévy α-stable distribu-
tions do not have a well-defined variance for α < 2 and
q-Gaussian distributions have a well-defined variance only
if q < 5/3. Lastly, μ is the center of the distribution, which
equals the expected value as long as it exists.

In order to discern which probability distribution func-
tion best fits the distribution of our data, we evaluate the
Kullback-Leibler divergence. The Kullback-Leibler diver-
gence DKL(r|s) of two probability density functions r and
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s is given by

DKL(r|s) =
∫ ∞

−∞
r(x) ln

(
r(x)
s(x)

)
dx. (6)

This, not surprisingly, resembles an entropy formulation,
which in this case is the relative entropy of r in relation
to s. To be more precise, the Kullback-Leibler divergence
DKL(r|s) should be defined over a set X with any measure
μ such that r = dR/dμ, s = dS/dμ, with R and S continu-
ous random variables drawn from r and s, respectively.

In Table I we show the Kullback-Leibler divergence
DKL(p|·) of the empiric distributions of the three time
series in relation to a α-stable distribution, as given in Eq.
(2), and to a q-Gaussian distribution, as given in Eq. (3).
A q-Gaussian distribution offers a better fit for all the three
price time series. For each of the fits, we also show the
calculated α and q values for the α-stable and q-Gaussian
distributions, respectively. The q values will be reevaluated
later in Sec. III D and compared with the entropic indices
derived from the data. It is worth mentioning that, for both
proposed distributions, we observe large deviations from
usual Gaussian distributions.

We note that q-Gaussian distributions have been exten-
sively discussed as candidate distributions for heavy-tailed
distributions that characterize various properties of finan-
cial markets and other complex systems [25,27]. A q-
Gaussian probability density asymptotically decays as a
power law with exponent −2/(q − 1); the corresponding
cumulative distribution function (CDF) decays with expo-
nent −2/(q − 1) + 1. Thus, if q = 3/2, the corresponding
CDF has power law tails with exponent −3. This is the
well-known “inverse cubic” law, which is an empirical
law observed for CDFs of various financial time series.
For instance, it has been observed in the fluctuations of
stock prices [76–78] as well as the return distributions of
currency exchange rates, cryptocurrencies, stock indices,
stock shares, and commodities [75,79]. Our analysis sug-
gests that electricity prices also fall in this universality
class: the observed q values are close to 3/2, as shown in
Fig. 3.

We have thus far concerned ourselves with the statisti-
cal properties of the data, detailing a candidate distribution
that can capture the heavy tailedness of the leptokurtic dis-
tribution of the data. An equivalently important question
relates to the correlations of the time series, in particular,
their persistence behavior, which we address subsequently.

C. Persistence and fractality in price time series

Separately from time series statistics, the examination of
the correlations—at different temporal scales—allows us
to uncover which phenomena are recurring in a statistical
sense. That is, is the time series persistent and thus repeats
itself? Or is it antipersistent, and thus follows an opposite
tendency in comparison to past events? In other words, we

are interested in studying the long-term memory or long-
range correlations of the data. When studying stochastic
time series, such as price time series, a common method
to evaluate the long-range dependency is to estimate the
Hurst exponent H [80]. The Hurst exponent H of a time
series with uncorrelated increments is H = 0.5. One can
roughly picture this as imagining that at any point of the
time series, the subsequent price is as likely to be higher
as it is likely to be lower than the present price. In this
manner, Hurst exponents H > 0.5 indicate that the incre-
ments of the price time series have positive correlations,
i.e., are persistent, and thus if we witnessed an increase
(decrease) in the price, it is more likely that the price will
keep increasing (decreasing). Conversely, Hurst exponents
H < 0.5 indicate antipersistence or anticorrelation. Thus,
a price increase (decrease) is more likely followed by a
price decrease (decrease) just after. This is a vital met-
ric in order to understand whether hedging is possible in
electricity markets [81].

A time series can have various Hurst exponents at dif-
ferent scales, telling us, for example, that the price is
positively correlated at some very short time scale and neg-
atively correlated at some much larger time scale. This, in
fact, is what we see below. Compounding this, we have
also seen in Fig. 2 the large excursions to very high or neg-
ative prices, which we quantified by proposing a suitable
candidate distribution for the data. We also examine the
strength of their fluctuations as we change between time
scales in our time series, and in that sense examine the
spectrum of multifractality.

A common method to estimate the Hurst exponent,
as well as the multifractal spectrum, is multifractal
detrended fluctuation analysis (MFDFA) [32,34,36,82].
As the name suggest, MFDFA studies the fluctuation of
one-dimensional time series around a smooth trend. First,
define the function F(v, s) over the integrated time series
Yi = ∑i

k=1(Xk − μX ) for i = 1, 2, . . . , N as

F(v, r) = 1
r

r∑
i=1

[Y(v−1)r+i − y(v−1)r+i]2 (7)

for v = 1, 2, . . . , Ns. Here, Yr is the segmentation of the
time series into nonoverlapping segments of size r, and yr
is a polynomial fit to this segment of the data. It is partic-
ularly well adapted to data with trends. The algorithm first
removes the trends of sequential segments of the data by
subtracting local polynomial fits from the time series via
least squares and only subsequently calculates the variance
of each segment. We utilize polynomials of order one.

Subsequently, to extract the multifractal spectrum of the
time series, a set of different powers are taken over the
average of all segments. From this, we define the fluctu-
ation function Fq̂(s), which depends on a time scale s of
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the process and the aforementioned powers q̂:

Fq̂(r) =
{

1
Nr

Nr∑
v=1

[F(v, r)]q̂/2
}1/q̂

. (8)

This is similar to considering a set of equivalent norms
with different powers, e.g., L1, L2, L3, etc. This is the func-
tion we study here onward. We note that the index q̂ is
not related to the q parameter in the distribution in Eq. (3).
The fluctuation function Fq̂(r) captures the increase of the
variance of the segments of the time series, i.e.,

Fq̂(r) ∼ rh(q̂), (9)

where h(q̂) is known as the generalized Hurst exponent,
which, for the case of q̂ = 2, reduces to our aforemen-
tioned Hurst exponent H = h(q̂ = 2).

We expect that the price time series are not monofractal
processes, i.e., processes that are solely quantified by a sin-
gle Hurst exponent H . In order to quantify the influence of
the jumps in the time series, we turn to the dependence of
h(q̂) on q̂. From this, we can construct the singularity spec-
trum f (α) and the singularity strength α as the Legendre
transform given by

α̂ = h(q̂) + q̂h′(q̂) (10)

and

f (α̂) = q̂[α̂ − h(q̂)] + 1 (11)

with h′(q̂) = dh(q̂)/dq̂. This leads to the iconic shape of
the singularity spectrum f (α̂) as one half of an inverted
parabola with maximum at α̂ = 0 [82,83]. Similarly as
before, we note that singularity strength α̂ is not related
to the α for α-stable distributions in Eq. (2).

1. Persistence of price time series

First, we turn to the question of long-range dependence,
i.e., persistence. In Fig. 4, we show the fluctuation function
Fq̂=2(r) for q̂ = 2. We plot Fq̂=2(r) versus the scale r on a
double logarithmic scale, as we are interested in the expo-
nents of Eq. (9), i.e., the Hurst exponent H . The exponent,
in a double-logarithmic plot, is simply the slope of the
curves, which we extract by fitting a straight line. Immedi-
ately, two phenomena are striking. First, for time scales
larger than 12 h, all time series have virtually identical
anticorrelations, with H ≈ 0.16. Moreover, at time scales
smaller than 12 h, the larger hourly markets become posi-
tively correlated, with H ≈ 0.63 for the day-ahead hourly
price and H ≈ 0.61 for the intraday hourly price, whereas
the intraday quarter-hourly price does not show a change
from correlated (r < 12 h) to anticorrelated (r > 12 h)
behavior, having H ≈ 0.31.

1 2 3 4 6 12 24 48 168 744
r (h)

100

101

102

F
q=

2(
r)

H
>

0.6

H < 0.4

t > 48 h12 < t< 48 ht < 12 h

Day Ahead Intraday Hourly Intraday Quarterly

4 5 6 8 12
100

101

FIG. 4. Fluctuation function Fq̂=2(r) over the scale r of the
three price time series on a double-logarithmic plot. By fitting
the curves we can extract the Hurst exponent as given in Eq. (9).
Noticeable is the change from persistence to antipersistence at
the 12 h mark, which is present for the hourly market but not
the quarter-hourly market. The separation into three disjoint time
ranges of t < 12 h, 12 < t < 48 h, and t > 48 h is discussed in
the multifractal analysis (see Fig. 5).

2. Fractality of price time series

We have already mentioned the necessity to properly
quantify the effects of the jumps in the time series, and we
have introduced the singularity spectrum f (α). Moreover,
already in Fig. 4, we have found at least two separate time
scales for the hourly markets: less than 12 h and greater
than 12 h. We now further divide the larger time scale
again into periods of 12 < t < 48 h and periods of t > 48 h
and study these three time scales and their multifractal
spectrum.

In Fig. 5, we display the singularity spectrum for q̂ ∈
(0, 10], i.e., the positive half of f (α) for the three afore-
mentioned time scales. We cannot evaluate the negative
q̂ powers here due to the limited precision of the data,
which makes obtaining negative moments a difficult task
as numerical instabilities are generated. To evaluate the
meaning of the singularity spectrum, we focus on the
widths of α̂ for the different time series, i.e.,

�α̂ = argmax[f (α̂)] − min[α̂]. (12)

This yields a measure of “how many fractal scales” are
present in each time series, which is commonly referred
to as the multifractal spectrum width. If our time series
had a single scale, i.e., a single Hurst exponent H , then
�α̂ = 0, and we would classify it as monofractal. The
meaning of �α̂ is thus straightforward to understand. If
the data are multifractal, i.e., they show a range of small
and large fluctuations and jumps, then �α̂ > 0. In Table
II we report all �α̂, as given in Eq. (12), as well as
�f (α̂) = max[f (α̂)] − min[f (α̂)]. These values give us a
notion of which scales show rougher behaviors and which
are milder.
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FIG. 5. Singularity spectrum f (α̂) and singularity strength α̂

for three distinct time scales of the three price time series: t <

12 h, 12 < t < 48 h, and t > 48 h. The horizontal width, i.e.,
the multifractal spectrum width �α̂, indicates the strength of the
fluctuation and jumps at the indicated time scales. The data show
larger �α̂ at short time scales, indicating that within these win-
dows, very large price variations are seen and are reverted back
to their mean value. The effects become milder as the time scales
increase, telling us that the market shows weaker jumps at large
time scales and always reverts back to its mean value. Finally, at
scales t > 48 h, the three markets become indistinguishable, as
we had also seen in Fig. 4 at the same scales. Results in Table
II. The singularity spectra are shifted horizontally for better vis-
ibility to allow for comparison of the widths and heights of the
spectra.

Again, here as before in Fig. 4, at large scales, the time
series coalesce to having identical fractal behavior and
comparably small �α̂ ≈ 0.50. All Fq̂=2 curves overlay for
t > 48 h, i.e., all have the same Hurst index H . They all
similarly show the same multifractal spectrum. The very
short time scales of t < 12 h show the largest �α̂, indicat-
ing the strongest multifractal behavior. This is very much
in line with the rare, sudden price increases or decreases
to extreme values, which very quickly correct themselves
and return to their average price.

Interestingly, there are considerable differences between
the markets in the range 12 < t < 48 h. The day-ahead

TABLE II. Multifractal spectrum width �α̂ and �f (α̂) for
three distinct time scales of the three price time series: t < 12 h,
12 < t < 48 h, and t > 48 h. The smallest time scale shows
the largest values of �α̂. Overall, the day-ahead hourly market
shows the smallest multifractal spectrum width �α̂ at the time
scale 12 < t < 48 h, which we propose offers a kind of “anchor”
for the prices to coalesce around.

t > 48 h 12 < t < 48 h t < 12 h

�α̂ �f (α̂) �α̂ �f (α̂) �α̂ �f (α̂)

Day ahead 0.29 0.82 0.14 0.59 0.99 2.05
Intraday hourly 0.27 0.82 0.50 1.35 0.71 1.20
Intraday quarterly 0.24 0.72 0.47 1.46 0.84 2.21

hourly market shows the smallest �α̂, i.e., it shows the
weakest multifractality. The day-ahead market constitutes
the largest share of the electricity markets in volume, and
thus ensures that electricity prices must all coalesce to
the mean behavior within the time scale 12−48 h. It is
therefore likely that, due to the large volume of trade
in the day-ahead market and the small �α̂ in the range
12 < t < 48 h, the day-ahead market serves as an anchor
for the other smaller markets and their prices, guaranteeing
that, in the long run, very large price fluctuations return to
normal price ranges within time scales smaller than 48 h.
An important question deals with the symmetry or asym-
metry of f (α̂) for observed price time series [35,83], i.e.,
how the singularity spectra look for q̂ < 0. This falls out-
side our examination, but in this case one expects the effect
of white noise to be dominant.

D. Obtaining local equilibria in leptokurtic electricity
price time series

We have thus far given an account of the correlation
behavior in the three electricity price time series, unveiling
different persistence behavior between the hourly market
and the quarter-hourly market. We have also seen that at
scales roughly larger than t > 48 h, the markets coalesce
to exhibit identical behavior, both in their diffusive behav-
ior, as seen in Fig. 4, as well as their multifractal behavior,
e.g., the presence of jumps in the data, as seen in Fig. 5.
Given that all price time series eventually return to an aver-
age price value, and that intrinsic periods are present in
the data, a time scale at which an equilibrium is reached
must exist. This is the time the price statistics balances out
before it is again affected by its various intrinsic changes
and large price variations.

The most straightforward way to examine the typical
time scale of local relaxation of a time series of a stochas-
tic process is to study its autocorrelation function. The
autocorrelation of a time series is given by

C(t − t′) = E[(X (t) − μX )(X (t′) − μX )]. (13)

For t − t′ = 0, i.e., C(0) = σ 2
X , we recover the variance of

the process. For t 	= t′, we obtain the covariance, which
yields the self-correlation of the process with itself, that is,
its memory. In Fig. 6, we show the autocorrelation func-
tion C(t′)/C(0) for our three price time series. Along with
an exponential-like decay, one can find well-defined peaks
that indicate the usual periods known in these time series:
12 h, due to the day-night cycle, 24, 48 h, etc. Although
there are several peaks, the autocorrelation shows a decay
that has a minimum at roughly 90 h. This indicates that
this is the time scale at which the process loses its mem-
ory. In order to more precisely ascertain what the intrinsic
time scale is for which the price time series attains a
local equilibrium, we turn to a superstatistical description
[39,40].
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FIG. 6. Autocorrelation functions C(t′)/C(0) of the price time
series and their respective volatilities. The short superstatistical
times τ for each price time series is extracted from the initial
exponential decay of Cp(t′). The results are given in Table III.
Also shown is the autocorrelation of the f parameter, discussed
in Sec. III E.

We have already seen that the probability distribution
functions of each price time series had very large kurtosis,
i.e., they are leptokurtic distributions (see Fig. 3). We fur-
ther identified the q-Gaussian distribution in Eq. (3) as a
good candidate to model the large kurtosis. Along similar
lines as discussed above, we now propose that the underly-
ing stochastic process that gives rise to these complicated
distributions of price time series is a composite process
with a probability density function ρ(p) given by

ρ(p) =
∫ ∞

0
f (β)�(p|β)dβ, (14)

where �(p|β) is a conditional distribution dependent on a
volatility parameter β that has probability density function
f (β).

What we are considering here is that the price time series
consists of two processes: one fast process of the actual
price time series, with local temporal properties, i.e., a cer-
tain level of fluctuations and an average price; and another
far slower process, which changes the strength of the fluc-
tuations and/or the average price at a larger temporal scale.
The description above in Eq. (14) accounts for the distri-
bution of the price time series ρ(p) being a convolution of
these two processes.

TABLE III. Long and short superstatistical times T and τ , and
the entropic indices q̄ of the three price time series. In all cases
the short superstatistical time is substantially smaller than the
long superstatistical time, i.e., τ 
 T.

T (h) τ (h) q̄

Day ahead 95 13.5 1.55
Intraday hourly 108 11.8 1.61
Intraday quarterly 104 7.6 1.46

Stemming from a physical understanding of the price of
stocks in other markets outside power systems [46,84,85],
a common assumption is to take �(p|β) as a Gaussian dis-
tribution. This assumption would mean that fundamentally
price time series obey locally Gaussian statistics, which is
then affected by a superstatistical change given by f (β).
In this work, we relax this constraint and propose that
�(p|β) need not necessarily be a Gaussian distribution,
but instead, simply restrict �(p|β) to be a symmetric dis-
tribution. This proposal means that in principle �(p|β)

can be, for example, a symmetric α-stable distribution, or
a q-Gaussian distribution, or possibly another symmetric
distribution (or even just a Gaussian distribution).

To evaluate if a distribution is symmetric, one can
evaluate its skewness s, i.e.,

sX := E

[(
X − μX

σX

)3]
= E[(X − μX )3]

{E[(X − μX )2]}3/2 , (15)

which is vanishing if the distribution is symmetric. As
mentioned before, we are interested in finding an average
time scale at which the price attains equilibrium. By this,
we mean that we are interested in a point in time where, on
average, a segment of the price time series has a skewness
s = 0. This point tells us, statistically, that the distribution
of events around a local price average balances to be sym-
metrically distributed. So, in some sense, this is the point in
time where the markets average out their electricity price,
and they are as likely to see a subsequent increase as a sub-
sequent decrease of the price, statistically speaking. This
time is referred to as the long superstatistical time T. We
can estimate the long superstatistical time T by taking seg-
ments of the price time series with a given time range
δt:

sp(δt) =
〈 [1/(δt)]

∑j δt
i=(j −1)δt+1(pi − p̄i)

3

{[1/(δt)]
∑j δt

i=(j −1)δt+1(pi − p̄i)2}3/2

〉
δt

. (16)

Here T is defined as the particular δt value such that s(δt =
T) = 0. Previous methods used the kurtosis κ rather than
the skewness s to estimate the long superstatistical time
T, but we think that, for electricity prices, the skewness is
a particularly well-suited observable, given that electricity
prices show both small and large deviations to high or low
(and negative) prices at different points in time. At δt = T
both positive and negative tails are equally pronounced,
indicating a symmetry of high and low extremes.

In Fig. 7, we display the local skewness sp(δt) (top
panel) as a function of the time range δt. For comparison,
we also show the local kurtosis κp(δt) (bottom panel), cal-
culated similarly as in Eq. (16) but considering the kurtosis
κ as in Eq. (1). Interestingly, we see that all three electricity
markets attain a skewness of s = 0, i.e., become symmet-
rical, at a scale of roughly four days or 96 h. In Fig. 7,
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FIG. 7. Estimating the long superstatistical time T from the
vanishing of the local skewness s(δt) given in Eq. (16). The top
panel shows the s(δt) for increasing segments of time length δt.
At approximately four days, indicated with the circular markers,
all price time series show a vanishing local skewness. We define
this as marking the long superstatistical time T. The lower panel
shows the local kurtosis κp(δt). We also show the kurtosis of a
Gaussian distribution, i.e., κ = 3, for comparison. We see that the
time series attain an equilibrium at the vanishing skewness s, but
they do so with different kurtosis, implying that their equilibrium
distributions are not Gaussian distributions, possibly apart from
the day-ahead hourly price time series. Each long superstatistical
time T can be found in Table III.

top panel, we indicate these times with circular markers.
For comparison, we also indicate, in the bottom panel, the
long superstatistical time and the kurtosis of each of the
local distributions. The dotted line indicates the kurtosis
κ = 3 of a Gaussian distribution. Although the larger, day-
ahead market has a kurtosis very close to that of a Gaussian
distribution, the other markets deviate from this and show
a large kurtosis κ > 3. We also note a second transition
in the intraday quarter-hourly market at roughly 4 h, indi-
cated with a triangular marker, which is yet another point
with zero skewness.

Thus, we have found the long superstatistical time T for
the three price time series by assuming that these can have
a rather general distribution locally, for as long as it is
symmetric. All the markets seem to have a very similar
long superstatistical time T, pointing to this being the local
balancing value for all time series, i.e., this is a common
feature of all the markets, likely due to their coupled struc-
ture. The exact long superstatistical times T for each price
time series can be found in Table III.

From this point, we can proceed further and analyze the
volatilities β that give rise to the superstatistical distribu-
tions for the given time series. Having unveiled the long

superstatistical time T of each time series, we can study
the stochastic process of volatilities β, which is given by

β(t) = 1
〈p2〉T − 〈p〉2

T
, (17)

i.e., it is given by the inverse of the local variance of the
segments with a time length of T. Strictly speaking, β−1

is the volatility, as it is proportional to the variance, but
for brevity, we simply define β as the volatility. We can
picture this in a simple way: if no changes were happen-
ing at a larger time scale (at the long superstatistical time
scale) in our time series then the variance of each segment
of time length T would be the same, and thus the volatil-
ity β would be a constant β0. This would also mean that
in Eq. (14) the distribution f (β) of the volatility β would
by a delta Dirac distribution and there would be no super-
statistical change in the time series [ρ(p) ≡ �(p|β0)]. The
distributions of the volatilities for our data can be found in
Appendix A.

Before we proceed, we need to ensure that our super-
statistical approach is justified. Just as discussed before, is
it true that we can separate two time scales from the time
series? For our superstatistical description of the leptokur-
tic distributions of price time series to be justified, we need
to evaluate the correlations of both the time series them-
selves and of the volatilities. We need to evaluate what is
the typical correlation length of the time series p(t). We
can do this by considering the initial exponential decay of
the autocorrelation function of the price time series, such
that C(τ ) = e−1C(0), as given in Fig. 6. For superstatistics
to be justified, the correlation time τ , denoting the short
superstatistical time scale τ , needs to be smaller than the
long superstatistical time T. This restriction ensures that
a local equilibrium is achieved on a time scale shorter
than the long superstatistical time scale T. Figure 6 shows
the autocorrelation functions, i.e., C(t′)/C(0), for the three
price time series p(t) and their respective volatilities β(t).
In Table III we can see that the short superstatistical
times τ are all smaller than the long superstatistical time
T. In a similar manner, we can see that the autocorrela-
tion functions of the volatilities Cβ(t′) decay slower than
the normalized autocorrelation functions of their respec-
tive price time series, telling us that the superstatistical
changes occur slower than the changes in the time series
themselves, as required by the superstatistical modelling
approach.

We have thus far shown that our description of the prob-
ability density function as a superposition of symmetric
(yet unspecified) distributions is justified and seems to
indicate that all price time series attain an equilibrium after
roughly four days (96 h). We now evaluate the strength
of the changes of the volatilities β. Since we assumed
a general description of �(p|β) as simply being a sym-
metric distribution, and given that we have not detailed
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specifically the distribution f (β) of the volatilities β, we
cannot evaluate Eq. (14) explicitly. We can nevertheless
consider the integration in Eq. (14) for small fluctuations
of β around β0 = 〈β〉. For small variance σ 2 = 〈β2〉 − β2

0 ,
we obtain

ρ(p) = 〈�(p|β)〉
= �(p|β0)〈�(p|(β − β0)〉

= �(p|β0)

(
1 + 1

2
σ 2p2 + O(σ 3)

)

= �(p|β0)

(
1 + 1

2
(q̄ − 1)β2

0 p2 + O(σ 3)

)
,

where we introduce the entropic index [40,86]

q̄ = 〈β2〉
〈β〉2 . (18)

The entropic index q̄ accounts for the variations of the
volatilities. It is a rather elegant measure for the existence
of nonstationarities or nonextensive properties in the data.
As described before, if there were no changes in the vari-
ance of the price time series, q̄ = 1, and Eq. (18) would
collapse to the case where ρ(p) ≡ �(p|β0). If, on the other
hand, the entropic index q̄ differs from 1, then we necessar-
ily have some variation of the volatilities β. In Table III we
report the entropic indices q̄ of the three price time series,
which all differ strongly from 1.

Naturally, a subsequent question is related to our choice
of fitting q-Gaussian distributions to ρ(p) in Sec. III B,
seen in Fig. 3, and the relation of that fitting parameter q
with the entropic index q̄. One way a q-Gaussian distribu-
tion arises is if choose �(p|β) as a Gaussian distribution
and f (β) a Gamma distribution. From this choice, one
finds that q = q̄. From a theoretical point of view, with-
out detailing the distribution of the volatilities f (β), it is
not possible to ascertain if ρ(p) is justifiably given by a q-
Gaussian distribution. This nevertheless does not preclude
comparing the entropic indices q̄ with the q values of the
best fitting q-Gaussian distributions.

In Table III, we indicate the entropic indices q̄ of the
volatilities of each price time series. We see that these very
closely resemble the q values of the q-Gaussian distribu-
tions in Table I. For the day-ahead hourly price time series,
q = 1.46 and q̄ = 1.55; for the intraday hourly price time
series, q = 1.50 and q̄ = 1.61; and for the intraday quarter-
hourly price time series, q = 1.46 and q̄ = 1.46. These
stark similarities offer a justification for the choice of q-
Gaussian distribution as the descriptors for the distribution
of price time series. Note that, for all three electricity price
time series, the extracted q̄ values are considerably larger
than for other financial time series, such as, e.g., share
price indices or foreign currency exchange rates [86]. This

is understandable, given the complexity of the demand
dynamics of electricity markets.

E. The impact of weather on electricity prices

Fluctuations in renewable energy production on differ-
ent time scales are strongly influenced by weather regimes
and systems, like, e.g., blocking regimes, low pressure sys-
tems, and the passage of fronts [87–89]. Inherently, so
are electricity prices because of the merit-order effect. As
previously shown in Fig. 1, the prices generally increase
with the residual load. This general dependency is well
approximated by a linear function except for the extreme
cases of very small residual load (i.e., a large portion of
power being generated by renewable sources) or the oppo-
site case of very large residual load (i.e., full conventional
generation). We now examine in more detail the impact of
large-scale weather regimes and systems on the statistics
of electricity prices.

An objective method to characterize the large-scale cir-
culation in the lower atmosphere is the circulation weather
type (CWT) approach [49], which has turned out to be
particularly suitable for wind energy applications in Cen-
tral Europe [50,63,90,91]. In this approach mean sea level
pressure (MSLP) fields around a central point in Central
Europe (here 10◦ east and 50◦ north near Frankfurt am
Main, Germany) are assigned to one out of eight direc-
tional and/or two rotational weather types. Furthermore,
the strength of the flow is calculated and provided as the
f parameter. Low values of the f parameter represent
weak pressure gradients across Central Europe and are
thus associated with weak winds, while high f -parameter
values are related to strong pressure gradients and high
wind speeds. In this study we use hourly MSLP fields of
the latest reanalysis dataset of the European Centre for
Medium-Range Weather Forecasts (ERA5 [92]).

In Fig. 8 the relationship between the hourly f parame-
ter and different statistics of the electricity price time series
is shown. To this end, we condition the price time series
to different intervals of the f parameter and evaluate the
statistical moments separately for each segment. A dis-
tinct impact of the f parameter is revealed for the mean
μ and the skewness s, which are both positive for low
f -parameter values and become negative for high values.
This indicates that, under calm wind conditions, elevated
average prices with a skewed distribution towards high
price events occur. In contrast, high pressure gradients and
the associated strong surface winds result in reduced aver-
age prices with a skewed distribution towards negative
price events. This is valid for all three electricity markets.
The standard deviation σ (kurtosis κ) tends to increase
(decrease) with increasing f parameter, thus being char-
acteristic of prices during periods of high renewable pen-
etration, but the trends are less clear when compared to
the mean μ and the skewness s. The change of the mean μ
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FIG. 8. Impact of large-scale weather regimes on the statis-
tics of electricity prices. We sort all time intervals according
to the f parameter that represents the strength of the flow over
Central Europe, and evaluate the statistics of the resulting sub-
sets of the time series. We observe that low f -parameter values
(calm wind conditions) are associated with a large mean μ, small
standard deviation σ , positive skewness s, and somewhat large
kurtosis κ . These are the weather periods with low renewable
generation in Germany, which is dominated by wind generation.
When examining the raw prices (bottom plots), there are no peri-
ods of negative price (i.e., number of hours of negative prices),
and a maximum of “high” price events (where the raw prices
pr > μr + 3σr, r for raw). As the f -parameter value increases
(windier conditions over Central Europe), the mean μ and skew-
ness s turn negative, the standard deviation σ increases, and
the kurtosis κ decreases slightly. Likewise, negative (raw) price
events increase and “high” (raw) prices vanish. The top four
plots utilize the processed price data, and the bottom plots use
the actual raw prices, to best showcase the “true” negative price
events.

from positive to negative values for increasing f parameter
agrees well with the merit-order effect, indicating a funda-
mental change in the shape of the distribution of prices as
the weather changes. Furthermore, we find a maximum of
“high” price events and a minimum of negative electricity
prices during calm wind conditions (f parameter almost
zero), while negative price events increase and “high”
prices vanish during windy periods (high f parameter).

Interestingly, it is mainly the strength and not the direc-
tion of the flow that dominates the statistical moments of
the electricity price time series. An agreeing yet small cor-
relation in the statistics of prices are found when analyzing
the directional CWT west (associated with a strong zonal

flow over Central Europe) and the rotational CWT anti-
cyclonic (associated with a stable high-pressure system)
separately (see Appendix B).

Lastly, we are left with the question of whether intrin-
sic memory in price time series (as observed in Fig. 6)
is in line with the intrinsic changes of the atmospheric
flow over Central Europe. In Fig. 6 we show the autocor-
relation of the f parameter, which falls in line with the
typical decay of the autocorrelation of price time series.
Hence, the changes in the large-scale weather regime may
provide a physical justification for the adequacy of a super-
statistical treatment and the typical time scales of synoptic
circulation patterns like high and low pressure systems
may explain the observed superstatistical time scale T. We
should nevertheless note that price time series statistics
also changes due to the workweek-weekend changes in
generation and consumption, which falls outside the scope
of this article.

IV. CONCLUSION

In this article, we have examined three price time series
from the German and Austrian electricity market, indexed
in the European Power Exchange (EPEX SPOT), from
2015 to 2019. We analyzed spot market prices: the day-
ahead hourly electricity price, the intraday hourly electric-
ity price, and the intraday quarter-hourly electricity price.
We focused particularly on explaining and justifying the
very heavy tails evidence in the distributions of all price
time series. The three examined price time series are intrin-
sically correlated as they reflect the trade of electricity
futures in an open market, associated with an identical ini-
tial evaluation of electricity price in Europe. We addressed
the following four central questions in this article. (1) What
is an adequate model to describe the leptokurtic distribu-
tion of the price time series? (2) What characteristics and
time scales of the data give rise to these distributions? (3)
Can we determine these time scales from the data and find
a physical explanation for these? (4) How is the above
related to weather changes?

To tackle the first question, we started by addressing
the presence of strong nonstationarities in the data. Upon
examining these time series, one immediately notices the
strong nonstationary effects. This is evidenced across sev-
eral time scales: the average annual price is different every
year; it varies over the months, and is often higher at
the last month of each year; it varies between weekdays
and weekends, and day and night. To pursue a statistical
examination of the prices, we proposed a simple, purely
data-driven detrending of the data via the Hilbert-Huang
transform, with which we subtracted the slower trends of
the price time series.

We then turned to finding an adequate distribution for
the price time series data. After removing the long-term
nonstationarities, we presented two general distributions
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to describe the heavily leptokurtic distributions of the
price time series: q-Gaussian and symmetric Lévy α-
stable distributions. We evaluated the quality of the fits of
these two distributions by examining the Kullback-Leibler
divergence between the proposed distributions and the
empirical distributions of the price time series. We found
that q-Gaussian distributions offer, for all time series, the
best fit, and from these fits extracted their q values (all
roughly q = 1.5). Large values of q imply heavy-tailed
distributions, which are also observed in other financial
market time series [43,46,48,75,84,86,93,94]. Our obser-
vation of q ≈ 1.5 for electricity prices agrees well with the
well-established “inverse cubic” law for cumulative price
distributions [76,77].

This led us to the second and third questions: what are
the intrinsic time scales of these time series? We uncovered
the correlations in the price time series, i.e., their persis-
tence and long-range dependence. We found that all three
price time series are highly anticorrelated on time scales
greater than 12 h, having a Hurst coefficient H = 0.1−0.2.
Moreover, we also unveiled a small scale phenomenon for
periods less than 12 h, where prices in both hourly mar-
kets become positively correlated with H ≈ 0.6, whereas
the quarter-hourly market remains anticorrelated. We note
here that these markets show strong antipersistence for
periods greater than 12 h, rendering it conceptually pos-
sible to hedge prices [95]. Statistically speaking, this trend
means that if the price is decreasing at a given moment, the
price is very likely to increase in the next moment and vice
versa. This is the first intrinsic time scale we extract from
the price time series, which relates to internal correlations
of prices.

Subsequently, we examined the multifractal characteris-
tics of the data. We found a clear separation of the mul-
tifractal spectrum, described by �α̂ 	= 0 for the different
time series, resulting in large widths at small time scales.
This indicates that very large deviations happen and correct
themselves in a very short manner, under 12 h. Moreover,
at the intermediate scale, the largest market, the day-ahead
hourly market, shows the smallest multifractal spectrum
width �α̂ ≈ 0.5, pointing to a time scale that “anchors” the
price fluctuation—i.e., a scale where fast price changes and
jumps are not seen. This serves as a base for the price of the
other markets and ensures that no extreme events extend
beyond this period. This agrees with the common under-
standing that electricity prices can see very sharp peaks
in prices, but this behavior is unsustainable for long peri-
ods of time—i.e., any fast change to extreme prices is very
quickly corrected. This constitutes the second time scale,
from 12 to 48 h, where extreme prices can happen but are
corrected.

We returned to the overarching question of nonstation-
arity in price time series, proposing to describe the price
time series distribution via a superposition of symmetric
yet unspecified simple distributions. Using superstatistical

analysis, we showed that by assuming the underlying fun-
damental distributions to be symmetric, one can uncover a
unique long time scale—the long superstatistical time—at
roughly 96 h for all three markets. This constitutes the third
intrinsic time scale extracted in this article, and it relates
to the slow-changing nonstationarity effects in price time
series. Having uncovered the large time scale of changes
in price time series we returned to our initially proposed
q-Gaussian distributions of price time series. From the
superstatistical analysis, we extracted the entropic indices
q̄—a measure of the “changes of statistics”—of each price
time series, all roughly q̄ = 1.5, which agree well with the
fits from the aforementioned q values of the q-Gaussian
fits. Hence, we offered an explanation for the largely lep-
tokurtic distributions of price time series as a combination
of the changing local statistics.

As a final step with respect to question (4), we exam-
ined circulation weather types, and in particular the “f
parameter,” which is a measure of the strength of the large-
scale near-surface flow over Central Europe. We found that
European electricity price time series are highly dependent
on the strength of the flow (rather than on the direction
of the flow). In particular, wind energy generation—which
depends on the pressure gradient over Europe—is the main
renewable energy generation type in Germany, and thus
highly influences electricity prices. We observe a clear
relation between the strength of the flow and the change in
price dynamics: “calm” wind conditions (low f -parameter
values) lead to price distributions with higher mean and
positive skewness (i.e., more high-price events). Simi-
larly, these show a lower standard deviation, characteristic
of a reliance on conventional generation. On the oppo-
site spectrum, strong pressure gradients (high f -parameter
values) with windier conditions lead to low prices on aver-
age, negative skewness, and increased standard deviation.
We also observe a congruent autocorrelation decay of the
electricity price and the f parameter, which strongly sug-
gests that the vanishing memory in the prices is induced
by a change in the weather conditions, as we observed
in the superstatistical analysis. Hence, we found a pos-
sible physical mechanism that explains the long super-
statistical time of approximately 96 h for the price time
series.

The analysis presented in this article provides some
powerful and novel tools for a better understanding of
spot market electricity price time series, which we investi-
gated in this study using data from Germany and Austria,
from 2015 to 2019. In particular, our methods may help to
pave the way forward to enable modelling price time series
with the correct statistical properties in future studies, by
considering relevant characteristics like nonstationarities,
adequate local distributions, and intrinsic correlations. Our
methods may also help in extracting information on the
relevant time scales of transitions in given data and clarify
their relation to weather changes.
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APPENDIX A: DISTRIBUTIONS OF THE
VOLATILITIES β OF THE PRICE TIME SERIES

We present here the empirical distributions of the
volatilities β as drawn from Eq. (17), alongside two candi-
date distributions, the log-normal distribution

flogN (β) = 1√
2πsβ

exp
(

− (ln β − μ)2

2s2

)
(A1)

and the inverse-Gamma distribution

finv	(β) = bc

	(c)
1

βc+1 exp
(

− b
β

)
. (A2)

In Fig. 9 the empirical distributions and these two best-
fitting distributions are shown. We also tested fittings with
Gamma and F distributions, by minimizing the Kullback-
Leibler divergence DKL as given in Eq. (6). The log-normal
and inverse-Gamma distributions provide the best fits.
These results must be judged as illustrative, as the data are
insufficient in size to clearly single out a particular form of
f (β). We can nevertheless see that the volatilities β vary
over a wide range of values, as described by an entropic
index q̄ that deviates substantially from 1.
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FIG. 9. Distributions f (β) of the volatilities β, on a double
logarithmic scale, of the three price time series and the two best-
fitting log-normal and inverse-Gamma distributions, given in
Eqs. (A1) and (A2), minimizing the Kullback-Leibler divergence
DKL, as given in Eq. (6). Inset shows a linear scale.

APPENDIX B: DEPENDENCE OF PRICE TIME
SERIES ON ATMOSPHERIC FLOW DIRECTION

The circulation weather typing approach, as discussed
in Sec. III E, also enables a separation of the atmospheric
flow into eight directional and/or two rotational types. Fol-
lowing the work by Wohland et al. [90], we focus on two
of these weather types in this study: anticyclonic and west-
erly weather types (note that, for both weather types, the
full spectrum of potential f -parameter values is consid-
ered). The anticyclonic weather type is typically associated
with stable and steady weather, while the westerly type
often comes along with strong pressure gradients and thus
strong winds, and with the passage of lows and fronts.
We condition the price time series to these two weather
types. To exclude situations where the atmospheric flow is
strongly alternating on very short time scales, we select
only the cases where the anticyclonic and the westerly
weather types prevail for longer than 12 h and for longer
than 24 h, respectively. Subsequently, we analyze various
statistics of prices for each separate segment of the price
time series. In Fig. 10 we summarize the results, where we
show the mean μ, standard deviation σ , and skewness s
for each price time series, conditioned to either westerly
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FIG. 10. Impact of particular weather types on the statistics
of price time series. We condition the price time series to either
westerly or anticyclone states for segments longer than 12 h
(g > 12) and for segments longer than 24 h (g > 24). For each,
we calculate the mean μ, standard deviation σ , and skewness
s of the prices. A separation between westerly and anticyclone
weather types is in agreement with the price relation with the f
parameter in Fig. 8. Westerly weather types are associated with
a negative mean, more elevated standard deviation, and slightly
negative kurtosis. In opposition, anticyclone weather types are
associated with positive mean, smaller standard deviation, and
slightly positive skewness.
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or anticyclone states for longer than 12 or 24 h, which
we denote as g > 12 h and g > 24 h, respectively. We do
not include the kurtosis, as estimating the kurtosis requires
a larger set of data points. In general, westerly weather
types are rather associated with a negative mean, a slightly
negative skewness, and a higher standard deviation when
compared to the anticyclonic weather type. These statistics
reflect the typical characteristics of the westerly weather
types with fluctuating strong wind speeds. In contrast, the
mean and the skewness tend to positive values for the
anticyclonic weather types, and the standard deviation is
smaller than for the westerly weather types. These results
generally agree with what we obtained for the f parameter
in Sec. III E, yet the effect is considerably smaller than for
the f parameter.
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