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Abstract The electromagnetic form factors of the �

hyperon in the time-like region are determined precisely
through a dispersion-theoretical analysis of the world data for
the cross section of the annihilation process e+e− → �̄�.
The spectral function is represented by a superposition of nar-
row and broad vector meson poles. We test different scenarios
for the spectral function and obtain a good description of the
world data in the time-like region. The uncertainties in the
extracted form factors are estimated by means of the boot-
strap sampling method. The analytical continuation of the
form factors to the space-like region introduces large errors
due to the lack of data. When the electric � radius from chi-
ral perturbation theory is taken as a constraint, the magnetic
radius is predicted as rM = 0.681±0.002 fm. We also extract
various vector meson to baryon coupling constants.

1 Introduction

The precise determination of the electromagnetic form fac-
tors (EMFFs) of the nucleon has become an urgent task since
the emergence of notable “proton radius puzzle” in 2010,
namely the tension between the muonic determination of pro-
ton charge radius and previous measurements based on the
electron-proton scattering and hydrogen spectroscopy [1–3],
though it must be said that the dispersion theoretical anal-
ysis of the scattering data always led to a value consistent
with the one from muonic hydrogen, see the discussion in
Ref. [4]. The nucleon EMFFs are accessed experimentally
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through elastic electron-proton scattering e− p → e− p as
well as electron scattering on light nuclei (as no neutron tar-
get exists) for the space-like region, and the p̄ p annihilation
process p̄ p → e+e− and likewise the reactions e+e− → p̄ p
and e+e− → n̄n for the time-like region (see, e.g., Refs.
[5–7] for recent reviews). In this context, some impressive
experimental results have been reported over the last decade.
The PRad collaboration measured the differential cross sec-
tions of e− p scattering down to an unprecedented momentum
transfer of Q2 = 2.1 × 10−4 GeV2 [8] while the BaBar [9]
and BESIII [10–13] collaborations measured the total cross
sections for e+e− → p̄ p over a large range of center-of-mass
energies. And still many experimental and theoretical efforts
continue. On the theoretical side, we mention in particular
a high-precision dispersion-theoretical analysis of the world
data of the nucleon EMFFs in the space- and time-like regions
that was reported in Ref. [14] last year. The statistical uncer-
tainties of the extracted form factors were estimated using the
bootstrap method, while systematic errors were determined
from variations of the spectral functions. This work further
solidified the earlier findings of a small proton charge radius
rp = 0.84 fm with subpercent accuracy.

There has also been increasing interest in the electromag-
netic structure of hyperons in the past two decades, both
from the experimental [15–25] and theoretical [26–41] side.
Compared to the nucleon, the development of experiments
exploring the hyperon EMFFs is somewhat lagging behind
since the hyperons are unstable. Therefore hyperon targets for
elastic electron scattering experiments that access the EMFFs
of hyperons in the spacelike region are not available. The
main source of information are measurements of the reaction
e+e− → �̄� that depends on the EMFFs in the time-like
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region. For a recent review of the current experimental status
on � EMFFs see Ref. [42]. A recent improvement of the data
base is provided by the cross section for e+e− → �̄� around
4 GeV reported by the BESIII Collaboration last year [25].
It enriches the data base of the � EMFFs, which previously
only covered the near-threshold region, to a great extent.

To date, only a subset of these �̄� data has been studied
theoretically [29,30,32,39–41]. In particular, the previous
near-threshold data were analyzed in Refs. [29,39], which
used phenomenological Ȳ Y potential models, that are con-
strained by final-state interaction (FSI) effects in reactions
like p̄ p → Ȳ Y , to calculate the EMFFs of hyperons. More-
over, Ref. [30] utilized Fano-type form factors, that include
the interference between several resonances and one con-
tinuum background constructed based on perturbative QCD
(pQCD) predictions, to fit those data near threshold. This
analysis found that the excited φ meson φ(2170) is required
to reproduce the close-to-threshold enhancement observed
in the e+e− → �̄� reactions. Similar interpretations were
also investigated in Refs. [32,40] using the vector meson
dominance (VMD) parameterization for the EMFFs of the
� hyperon. In contrast, the work of Ref. [41] only focused
on the newest measurements around 4 GeV by the BESIII
group. It was found that the dip near the mass of ψ(3770) in
the cross sections of e+e− → �̄� gets contributions from
both D-meson loops and the three gluon charmonium anni-
hilation mechanism.

The present work seeks to obtain a fit to the full data
basis of �̄� production data collected so far based on dis-
persion theory [43–46]. The spectral function of the EMFFs
is parametrized in terms of narrow and broad vector meson
poles and includes the constraints from unitarity, analytic-
ity and crossing symmetry. Moreover, it is consistent with
the strictures from pQCD at very large momentum trans-
fer [47]. The uncertainties in the extracted form factors are
estimated by means of the bootstrap sampling method. We
already note here that for an estimation of the systematic
uncertainty, which can be accessed by varying the number of
poles in the spectral function [4,45], the data base is simply
too sparse. A recent review of the dispersion-theoretical for-
malism is given in Ref. [4]. Here we extend this dispersive
strategy to the hyperon cases in a straightforward way.

The paper is organized as follows: in Sect. 2 the total cross
section of the process e+e− → ��̄ in Born approximation is
presented and the details of the dispersion-theoretical param-
eterization of the electromagnetic form factors of � hyperon
as well as the fit strategy are illustrated. Section 3 contains the
numerical results for the EMFFs of the � hyperon and their
discussion. A summary and conclusion is given in Sect. 4.

2 Formalism

We briefly introduce the basic formulae for the analysis of the
EMFFs of the � hyperon in the dispersion-theoretical frame-
work. When assuming one-photon exchange as the sole con-
tribution, the so-called Born approximation, the total cross
section of the annihilation reaction e+e− → Ȳ Y can be writ-
ten as [39],

σe+e−→Ȳ Y

= 4πα2β

3s
C(s)

[
|GM (s)|2 + 2m2

Y

s
|GE (s)|2

]
, (1)

where Y = �, 	, 
 denotes the hyperons with Ȳ the corre-
sponding anti-hyperons. Moreover, α ≈ 1/137.036 is the
fine-structure constant and β = kY /ke denotes a phase-
space factor. Here, kY and ke are the moduli of the center-
of-mass three-momenta in the outgoing Ȳ Y and incoming
e+e− systems, satisfying s = 4(m2

Y + k2
Y ) = 4(m2

e + k2
e ),

with
√
s the total energy and mY (me) the hyperon (electron)

masses. C(s) represents the S-wave Sommerfeld–Gamow
factor defined by C = y/(1 − e−y) with y = παmY /kY .
Note thatC(s) ≡ 1 for the neutral hyperons (�, 	0, 
0). The
complex functions GE (s) and GM (s) are the Sachs electric
and magnetic form factors of the hyperons in the time-like
region. They are accessible in this reaction for s ≥ 4m2

Y .
When the functions are analytically continued to negative
values of s, i.e. to the space-like region, they are real and
describe the elastic scattering of electrons of the hyperons.
The variable −s ≡ Q2 then specifies the four-momentum
transfer Q2 in the elastic scattering process.

Since the separation of GE and GM requires angular dis-
tributions, the time-like experimental data is often given in
the form of the effective form factor Geff , which is defined
by

|Geff(s)| =
√√√√√ σe+e−→Ȳ Y (s)

4πα2β
3s C(s)

(
1 + 2m2

Y
s

) . (2)

When employing the dispersion-theoretical analysis, it is
convenient to express the Sachs form factors in terms of the
Dirac (F1) and Pauli (F2) form factors,

GM = F1 + F2, GE = F1 + s

4m2
Y

F2, (3)

with the normalization at zero momentum transfer given by
F1(0) = GE (0) = 0 and F2(0) = GM (0) = μ� for the
electrically neutral � hyperon. Here μ� = −0.613μ̂N =
−0.723μ̂� is the magnetic moment of the � hyperon [49]
with μ̂N ≡ e/(2mN ) and μ̂� ≡ e/(2m�).

The strategy of the dispersion-theoretical analysis for the
EMFFs of the � hyperon is quite similar to the nucleon case
which is explained comprehensively in the review [4]. The
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dispersion relation for a generic form factor F(s) is written
as

F(s) = lim
ε→0+

1

π

∫ ∞

s0

ds′ Im F(s′)
s′ − s − iε

, (4)

where Im F in the time-like region, also called the spectral
function, is required as input. Furthermore, s0 denotes the
threshold of the lowest cut of the form factor F(s). In the
nucleon case, s0 = 4M2

π (9M2
π ) for the isovector (isoscalar)

form factors. For the � hyperon, there is only an isoscalar
contribution, i.e., F�

i = Fs
i with i = 1, 2 and s0 = 9M2

π ,
since the � is a isospin singlet. The contribution of the three-
pion cut is expected to be small except for the ω contribution.
See Ref. [48] for an explicit calculation in the nucleon case,
which shows that the anomalous threshold in the three-pion
channel is effectively masked by the phase space behavior.

Therefore, the spectral functions for the � isoscalar FFs
are parameterized as a sum of effective vector meson poles,
narrow delta function poles on the real axis and broad delta
function poles in the complex plane, without any explicit
continuum contributions. This leads to the following repre-
sentation of the FFs:

Fs
i (s) =

∑
V=ω,φ,s1,···

aV��
i

M2
V − s − iε

+
∑

V=φ2170,ψ3770,S1,···

aV��
i

M2
V − s − iMV
V

, i = 1, 2.

(5)

The residues aV��
i must be real in order to ensure a real

spectral function. Here, the broad vector meson poles are
introduced to generate the non-zero imaginary part of the
EMFFs of the � in the timelike region. In the narrow sector,
two physical states, the ω and φ mesons, are included as in
our previous analyses to the nucleon EMFFs [4,14]. Follow-
ing the previous studies on the �̄� data in the near-threshold
region [30,32,40] and works on the newest BESIII data set
around 4 GeV [25,41], the φ(2170) and ψ(3770) states are
included in the broad sector. The PDG values [49] for the
masses and widths of those physical vector states are used
as input in our analysis. The fit parameters are therefore the
various meson residua aV��

i and the masses and widths of
the additional vector mesons si , Si . Since these parametrize
continuum contributions, we require the widths of the Si to
be larger than the width of the physical ψ(3770). Finally,
several physical constraints are included in the parametriza-
tions of Eq. (5). First, two normalization conditions for the
values of FFs at zero momentum transfer must be fulfilled.
Second, three constraints from the superconvergence rela-
tions inferred from the pQCD predictions for the asymptotic
behavior of the EMFFs are taken into account. They are given

by∫ ∞

s0

Im Fs
i (s)snds = 0, i = 1, 2, (6)

with n = 0 for Fs
1 and n = 0, 1 for Fs

2 . These relations ensure
the correct fall-off with inverse powers of s at large space-like
momentum transfer s as predicted by pQCD [47], i.e., Fs

1 ∼
1/s2 and Fs

2 ∼ 1/s3. Small logarithmic corrections to the
power law behavior are neglected. Third, the electric charge
radius of the � hyperon is fixed to the value 〈r2

E 〉 = 0.11 ±
0.02 fm2 that was calculated in chiral perturbation theory
[50]. This constraint is useful since the energy region covered
by the time-like data starts at s = 4m2

� and thus the slope
at s = 0 can not be constrained well by them. In principle,
one could also introduce the corresponding magnetic radius
〈r2

M 〉 as a constraint. However, 〈r2
M 〉 has a significantly larger

absolute uncertainty since the rather poorly known LECs b9,
b10, and b11 contribute [50]. Therefore, it is less useful as a
constraint and we make a prediction from the fit instead.

Our previous work on the nucleon form factors [4,14]
emphasized that the two-pion continuum plays an important
role to describe the nucleon isovector radii [51]. However, in
the timelike region above the two nucleon threshold, these
effects are small and the form factors are mainly determined
by the effective vector meson poles [4,14]. In the present
work, we only analyzed the� form factor data in the time-like
region and above the ��̄ threshold. Therefore one can safely
assume that the effective vector poles located above 1 GeV
contribute dominantly. Whether the continuum contributions
play a similar role for the radii as in the nucleon case is an
open question that is beyond the scope of this work. These
contributions are not well known for the � form factors.
Once more experimental information becomes available, the
explicit inclusion of continuum contributions obtained from
other processes would be desirable.

3 Fit strategy and results

The first step is to find the best configuration for the EMFFs of
the � hyperon, i.e., the numbers of the narrow poles si and the
broad poles Si in Eq. (5). We start by including only the nar-
row physical poles (ω and φ mesons) with fixed masses while
the φ(2170) and ψ(3770) states are not included a priori. In
the second step, we increase the numbers of narrow poles si
and broad poles Si one by one. All pole masses except those
of the ω and φ poles and all residua are fit parameters. Using
this procedure, the database for the �̄� production composed
of the measurements by the DM2 [15], BaBar [16], CLEO
[18] and BESIII [20,21,25] collaborations is fitted with 7
constraints: 2 normalization conditions, 3 superconvergence
relations, and 1 radius condition for 〈r2

E 〉.
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Fig. 1 Results of the fit to the full data sets for the total cross sections of
the reaction e+e− → �̄� that taken from Refs. [15,16,18,20,21,25].
Left panel: comparison between Fit-I (dashed line) and Fit-II (solid

line). Right panel: Fit-II with the error band given by the bootstrap
method. The �̄� threshold is represented by the vertical dash-dotted
lines

Table 1 Comparison between the Fit-I and Fit-II. Fit-II is our preferred fit. The ‡ represents an input quantity that was fixed to the physical state
from PDG [49] (mass and width are constant in the fit)

Configuration Narrow (MV ) Broad (MV + i
V ) Ndof χ2
tot χ2

Fit-I ω(782)‡ φ(1020)‡ s1(2014) S1(2232 + i33) S2(3760 + i11) S3(4170 + i6) 38 58.17 1.531

Fit-II s1(1965) φ(2170 + i100)‡ ψ(3770 + i27)‡ S1(4163 + i32) 42 109.0 2.596

We find that at least one additional narrow and three broad
poles are required for an acceptable χ2 in the fit. The reduced
χ2 for the best fit is 1.531. In this fit the EMFFs of the
� hyperon get contributions from 6 pole terms: ω, φ and
s1(2014) in the narrow part and S1(2232), S2(3760) and
S3(4170) in the broad part. We refer to this fit as Fit-I. It
is displayed as the dashed line in the left panel of Fig. 1.
Comparing the pole masses to the mass spectra for the light
vector mesons and charmonia (cc̄) listed in PDG [49], the
effective narrow pole s1(2014) and the broad pole S1(2232)

obtained in the fit are close to the physical φ(2170) state
(M = 2162 ± 7 MeV and 
 = 100+31

−23 MeV). More-
over, the S2(3760) and S3(4170) poles are quite close to the
charmonium states ψ(3770) (M = 3773.7 ± 0.4 MeV and

 = 27.2 ± 1.0 MeV) and ψ(4160) (M = 4191 ± 5 MeV
and 
 = 70 ± 10 MeV), respectively. When the φ(2170),
ψ(3770) and ψ(4160) states are included as broad poles
with fixed masses in the spectral function, one gets a rela-
tively large reduced χ2 of 3.877. The main contribution to
the χ2 comes from the data set reported in Ref. [25] (labeled
as BESIII(2021) in the following). Our analysis suggests that
the contribution to the χ2 of the data set BESIII(2021) is quite
sensitive to the parameters of the effective poles located in
the energy region of the data. This is because there are large
statistical fluctuations in this data set, especially in the region
above 4 GeV, which was also noticed in Ref. [52].

Because of these observations, we focus in the following
on the choice of the � spectral function where the two phys-
ical mesons (ω and φ) and one floating effective pole s1 are

contained in the narrow sector and the φ(2170) and ψ(3770)

states with fixed masses together with one additional floating
pole S1 make up the broad sector (the best solution for this
choice of spectral function is labeled as Fit-II).

A comparison between the pole content and results of Fit-
I and Fit-II is given in Table 1 and Fig. 1, respectively. The
reduced χ2 of Fit-II is 2.596 which is compatible with the
“Fit I” implemented by the BESIII Collaboration in their
experimental announcement [25]. The uncertainties are esti-
mated by using the bootstrap sampling method. As one can
see from the right panel of Fig. 1, all measurements for the
reaction e+e− → �̄� can be described well by Fit-II. Note
that the oscillation in the near-threshold region generated by
the interference of s1(2011) and S1(2232) in Fit-I is gone. In
Fit-I, the data point in BESIII(2018) [20] close to threshold is
reproduced by that oscillation in agreement with the finding
of Ref. [40].

We replace this feature with the simpler single-pole con-
tribution from the physical state φ(2170) in Fit-II since such
an oscillation can not be confirmed definitely by the current
experiments. This is in conjunction with the general strat-
egy to use as few poles as possible to stabilize the ill-posed
problem of reconstructing the spectral function from experi-
mental data [53,54]. However, a further experimental inves-
tigation of this issue is required in the future. Furthermore, a
pole located around 4.163 GeV is suggested by Fit-II which
could be identified with the physical state ψ(4160). Its mass
is, however, outside the mass range for the ψ(4160) quoted in
PDG [49]. The physical information regarding this pole will
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Table 2 The parameters corresponding to our best fit (Fit-II) together with the bootstrap errors. Masses MV and widths 
V are given in units of
GeV and residua aVi in GeV2. The ‡ indicates that the corresponding parameter was taken as input and is not fitted

V (narrow) ω(782) φ(1020) s1

Mnarrow 0.783‡ 1.019‡ 1.9647+0.0274
−0.0316

aV��
1 0.6699+0.0050

−0.0040 −1.3025+0.0151
−0.0188 0.6326+0.0138

−0.0110

aV��
2 −1.2793+0.0074

−0.0089 1.4721+0.0191
−0.0155 −0.1928+0.0082

−0.0102

V (broad) φ(2170) ψ(3770) S1

Mbroad 2.162‡ 3.7737‡ 4.1630+0.0048
−0.0252


broad 0.100‡ 0.0272‡ 0.0321+0.0324
−0.0021

aV��
1 −0.0094+0.0043

−0.0035 −0.0010+0.0002
−0.0002 −0.0012+0.0003

−0.0024

aV��
2 −0.0196+0.0032

−0.0053 0.0003+0.0001
−0.0001 0.0005+0.0012

−0.0002

Fig. 2 The effective form factor of the � hyperon defined by Eq. (2)
from Fit-II. The error band was obtained by the bootstrap method. The
�̄� threshold is indicated by the vertical dash-dotted lines

be more clear if the statistical fluctuations in BESIII(2021)
data can be reduced. In this fit, we use the electric radius

of the � hyperon as input, rE =
√

〈r2
E 〉 = 0.332 fm from

Ref. [50] to have some constraint from the space-like region.
The magnetic radius of the � hyperon derived from Fit-II is
then given by

rM = 0.681 ± 0.002 fm . (7)

The obtained magnetic radius is a bit larger than the value
in Ref. [32], rM = 0.42 fm but also the electric radius given
there is smaller than the CHPT determination, rE = 0.11 fm.
The fit parameters of Fit-II are presented in Table 2 together
with the bootstrap error bars. For convenience, we also show
the effective form factor |Geff | defined in Eq. (2) for Fit-II in
Fig. 2.

Here, we only focus on the residua of the ω and φ mesons.
Translating into the ω�� and φ�� couplings [4], one has

gV��
i = fV

M2
V

aV��
i , i = 1, 2,

with fω = 16.5, fφ = 13.4, (8)

and therefore

gω��
1 = 18.04+0.13

−0.11, gω��
2 = −34.45+0.20

−0.24, gφ��
1

= −16.81+0.19
−0.24, gφ��

2 = 18.99+0.25
−0.20, (9)

corresponding to a tensor-to-vector coupling ratio (κV�� =
gV��

2 /gV��
1 ) of about −2 for the ω�� and −1 for φ��

case. The corresponding ω couplings to the nucleon derived
from the residua in the dispersion analysis of nucleon form
factors [4] including the statistical (first error) and systematic
(second error) uncertainties are gωNN

1 = 18.6 ± 2.0 ± 3.8
and gωNN

2 = 8.4 ± 3.2 ± 5.8 such that the tensor-to-vector
coupling ratio, κωNN = 0.42+0.44

−1.24 [14]. It thus has a large
uncertainty, but is still compatible with zero. Also, the sta-
tistical and systematic errors are added in quadrature when
calculating the ratio. Note that for the nucleon no φ cou-
plings were given since the separation of the φ from the K K̄
continuum is ambiguous.

Next we investigate the role of SU(3) flavor sym-
metry for the vector couplings. The ratios between the
nucleon and � hyperon vector couplings are given by
gω��

1 /gωNN
1 = 1.00+0.65

−0.39 and gφ��
1 /gωNN

1 = −0.94+0.38
−1.09

which are expressed as (2/3) × (5αBBV − 2)/(4αBBV − 1)

and (−√
2/3) × (2αBBV + 1)/(4αBBV − 1), respectively,

with the SU(3) relations1 [55]. The ratio gω��
1 /gωNN

1 fol-
lows the SU(3) expectation when αBBV ≥ 0.82, while the
matching condition for gφ��

1 /gωNN
1 is αBBV ≤ 0.8. Only

the former case can be compatible with the SU(3) symme-
try expectation that αBBV ≈ 1.0. For the tensor coupling,
gωNN

2 is expected to be zero in SU(3) symmetry and gω��
2

can be expressed in terms of gωNN
2 and gρNN

2 . However, the

1 The SU(3) relations give gωNN
1 = (4αBBV − 1), gφ��

1 =
−√

2
3 (2αBBV + 1) and gω��

1 = 2
3 (5αBBV − 2) [55].
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latter quantity is not available in the previous dispersion-
theoretical analysis of NFFs as the ρ is part of the two-
pion continuum. Further, we can extract the couplings for
the ψ(3770). We find gψ(3770)��

1 = −0.0040 ± 0.0008 and

gψ(3770)��
2 = 0.0012 ± 0.0004. A similar extraction of the

φ(2170) couplings is not possible since there is no experi-
mental data for the partial width of φ(2170) → e+e−.

4 Summary

In this work, we have analyzed the full set of cross section
full data for the reaction e+e− → �̄�, including the recent
measurements around s = 4 GeV by BESIII in dispersion
theory. The extracted EM form factors of the � hyperon from
our best fit (Fit-II, see Table 2, right panel of Figs. 1, 2) can
describe the world data base with a reduced χ2 of 2.596.
The � spectral function of the best fit contains two physi-
cal mesons, ω(782) and φ(1020), and one floating effective
pole s1 in the narrow sector and the φ(2170) and ψ(3770)

states with fixed masses together with one additional float-
ing pole S1 in the broad sector. A slightly better χ2 of 1.531
was obtained in Fit-I at the expense of a double pole struc-
ture close to threshold whose experimental status is unclear.
The uncertainties in the extracted form factors are given by
means of the bootstrap approach. An estimate of the sys-
tematic errors from a variation of the number of effective
poles is precluded by the sparse data set. The form fac-
tors in the space-like region are only weakly constrained
by the data in the time-like region. Including the value for
electric radius from the chiral perturbation theory calcula-
tion of Ref. [50] as a constraint, however, a magnetic radius
〈r2

M 〉1/2 = 0.681 ± 0.002 fm was extracted. From the fit, we
could determine the vector and tensor couplings of the ω and
the φ to the � hyperon, see Eq. (9). We have further extracted
the ωNN couplings and confirm that the tensor coupling is
suppressed and compatible with zero. It is also small for the
ψ(3770)�� coupling, where the tensor-to-vector coupling
ratio is κψ(3770)�� = −0.3 ± 0.5.
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