000916264 001__ 916264
000916264 005__ 20231027114349.0
000916264 0247_ $$2doi$$a10.1002/aenm.202203361
000916264 0247_ $$2ISSN$$a1614-6832
000916264 0247_ $$2ISSN$$a1614-6840
000916264 0247_ $$2Handle$$a2128/33839
000916264 0247_ $$2WOS$$aWOS:000891033200001
000916264 037__ $$aFZJ-2022-06065
000916264 082__ $$a050
000916264 1001_ $$0P:(DE-HGF)0$$aZhang, Chaohua$$b0$$eCorresponding author
000916264 245__ $$aGrain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High-Performance GeTe Thermoelectric Devices
000916264 260__ $$aWeinheim$$bWiley-VCH$$c2023
000916264 3367_ $$2DRIVER$$aarticle
000916264 3367_ $$2DataCite$$aOutput Types/Journal article
000916264 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675167021_18061
000916264 3367_ $$2BibTeX$$aARTICLE
000916264 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916264 3367_ $$00$$2EndNote$$aJournal Article
000916264 520__ $$aGrain boundaries (GBs) form ubiquitous microstructures in polycrystalline materials which play a significant role in tuning the thermoelectric figure of merit (ZT). However, it is still unknown which types of GB features are beneficial for thermoelectrics due to the challenge of correlating complex GB microstructures with transport properties. Here, it is demonstrated that GB complexions formed by Ga segregation in GeTe-based alloys can optimize electron and phonon transport simultaneously. The Ga-rich complexions increase the power factor by reducing the GB resistivity with slightly improved Seebeck coefficients. Simultaneously, they lower the lattice thermal conductivity by strengthening the phonon scattering. In contrast, Ga2Te3 precipitates at GBs act as barriers to scatter both phonons and electrons and are thus unable to improve ZT. Tailoring GBs combined with the beneficial alloying effects of Sb and Pb enables a peak ZT of ≈2.1 at 773 K and an average ZT of 1.3 within 300–723 K for Ge0.78Ga0.01Pb0.1Sb0.07Te. The corresponding thermoelectric device fabricated using 18-pair p-n legs shows a power density of 1.29 W cm−2 at a temperature difference of 476 K. This work indicates that GB complexions can be a facile way to optimize electron and phonon transport, further advancing thermoelectric materials.
000916264 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916264 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916264 7001_ $$0P:(DE-Juel1)171373$$aYan, Gan$$b1
000916264 7001_ $$0P:(DE-HGF)0$$aWang, Yibo$$b2
000916264 7001_ $$0P:(DE-HGF)0$$aWu, Xuelian$$b3
000916264 7001_ $$0P:(DE-HGF)0$$aHu, Lipeng$$b4
000916264 7001_ $$0P:(DE-HGF)0$$aLiu, Fusheng$$b5
000916264 7001_ $$0P:(DE-HGF)0$$aAo, Weiqin$$b6
000916264 7001_ $$aCojocaru-Mirédin, Oana$$b7
000916264 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b8
000916264 7001_ $$0P:(DE-HGF)0$$aSnyder, G. Jeffrey$$b9
000916264 7001_ $$00000-0002-3148-6600$$aYu, Yuan$$b10$$eCorresponding author
000916264 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202203361$$gp. 2203361 -$$n3$$p2203361 -$$tAdvanced energy materials$$v13$$x1614-6832$$y2023
000916264 8564_ $$uhttps://juser.fz-juelich.de/record/916264/files/Advanced%20Energy%20Materials%20-%202022%20-%20Zhang%20-%20Grain%20Boundary%20Complexions%20Enable%20a%20Simultaneous%20Optimization%20of%20Electron%20and.pdf$$yOpenAccess
000916264 909CO $$ooai:juser.fz-juelich.de:916264$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b8$$kFZJ
000916264 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916264 9141_ $$y2023
000916264 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
000916264 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000916264 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
000916264 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
000916264 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916264 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
000916264 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2023-10-26
000916264 920__ $$lyes
000916264 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000916264 980__ $$ajournal
000916264 980__ $$aVDB
000916264 980__ $$aUNRESTRICTED
000916264 980__ $$aI:(DE-Juel1)PGI-10-20170113
000916264 9801_ $$aFullTexts