001     916264
005     20231027114349.0
024 7 _ |a 10.1002/aenm.202203361
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/33839
|2 Handle
024 7 _ |a WOS:000891033200001
|2 WOS
037 _ _ |a FZJ-2022-06065
082 _ _ |a 050
100 1 _ |a Zhang, Chaohua
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High-Performance GeTe Thermoelectric Devices
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675167021_18061
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Grain boundaries (GBs) form ubiquitous microstructures in polycrystalline materials which play a significant role in tuning the thermoelectric figure of merit (ZT). However, it is still unknown which types of GB features are beneficial for thermoelectrics due to the challenge of correlating complex GB microstructures with transport properties. Here, it is demonstrated that GB complexions formed by Ga segregation in GeTe-based alloys can optimize electron and phonon transport simultaneously. The Ga-rich complexions increase the power factor by reducing the GB resistivity with slightly improved Seebeck coefficients. Simultaneously, they lower the lattice thermal conductivity by strengthening the phonon scattering. In contrast, Ga2Te3 precipitates at GBs act as barriers to scatter both phonons and electrons and are thus unable to improve ZT. Tailoring GBs combined with the beneficial alloying effects of Sb and Pb enables a peak ZT of ≈2.1 at 773 K and an average ZT of 1.3 within 300–723 K for Ge0.78Ga0.01Pb0.1Sb0.07Te. The corresponding thermoelectric device fabricated using 18-pair p-n legs shows a power density of 1.29 W cm−2 at a temperature difference of 476 K. This work indicates that GB complexions can be a facile way to optimize electron and phonon transport, further advancing thermoelectric materials.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yan, Gan
|0 P:(DE-Juel1)171373
|b 1
700 1 _ |a Wang, Yibo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wu, Xuelian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hu, Lipeng
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Fusheng
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ao, Weiqin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cojocaru-Mirédin, Oana
|b 7
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 8
700 1 _ |a Snyder, G. Jeffrey
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Yu, Yuan
|0 0000-0002-3148-6600
|b 10
|e Corresponding author
773 _ _ |a 10.1002/aenm.202203361
|g p. 2203361 -
|0 PERI:(DE-600)2594556-7
|n 3
|p 2203361 -
|t Advanced energy materials
|v 13
|y 2023
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/916264/files/Advanced%20Energy%20Materials%20-%202022%20-%20Zhang%20-%20Grain%20Boundary%20Complexions%20Enable%20a%20Simultaneous%20Optimization%20of%20Electron%20and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916264
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-26
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21