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Abstract

In biotechnology, cell growth is one of the most important properties for the characterization

and optimization of microbial cultures. Novel live-cell imaging methods are leading to an

ever better understanding of cell cultures and their development. The key to analyzing

acquired data is accurate and automated cell segmentation at the single-cell level. There-

fore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a

graphical user interface and OMERO data management. microbeSEG utilizes a state-of-

the-art deep learning-based segmentation method and can be used for instance segmenta-

tion of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or

fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, effi-

cient, and complete workflow from the creation of training data to the final application of the

trained segmentation model. We demonstrate that accurate cell segmentation results can

be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-

labeling further accelerates the microbeSEG workflow. This opens the door for accurate

and efficient data analysis of microbial cultures.

Introduction

Cell-to-cell heterogeneity induced by intrinsic biological factors and extrinsic environmental

fluctuations highly affects microbial cell growth and productivity of microbes [1–6]. State-of-

the-art microfluidic lab-on-chip systems with highly precise environmental control and time-

lapse imaging enable the investigation of causes and consequences of such heterogeneity at the

single-cell level [7–9]. Interesting growth parameters include the number of cells over time or

size distributions. To extract such quantities from the acquired image sequences, all cells in all
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images need to be individually segmented, a process that needs to be highly automated and

reliable due to the high numbers of cells (up to several tens of thousands of cells per experi-

ment). However, virtually error-free segmentation of acquired time-lapse images remains

challenging, as contrast and signal-to-noise ratio are typically low due to limited lighting con-

ditions to avoid phototoxic stress.

Cell segmentation tools are, therefore, often highly specialized to specific imaging condi-

tions. Such specialized tools must be adapted when acquisition settings or experimental

parameters change to cope with other cell morphologies or image modalities. When the tools

are based on traditional image processing methods, e.g., ChipSeg [10], some adaptations can

be achieved by manually adjusting parameters. Unfortunately, this often requires expert

knowledge of the underlying method and sometimes even code adaptations. In contrast, deep

learning-based methods are not tuned manually and are much more versatile but need to be

(re-)trained on annotated data (see Fig 1). Due to this versatility, deep learning methods domi-

nate cell segmentation challenges covering multiple object morphologies and imaging tech-

niques, e.g., the 2018 Data Science Bowl [11]. Furthermore, it is envisioned in [12] that

replacing existing analysis pipelines with more accurate deep learning counterparts would

greatly aid researchers who conduct live-cell imaging experiments by saving countless person-

hours of curation.

Training a deep learning-based method involves a pipeline consisting of multiple steps usu-

ally covered by various sequentially applied tools or programming steps. A typical workflow

Fig 1. Typical barriers when using segmentation software. Cell segmentation methods are typically designed for specific applications and therefore

often lack a data management system with a versatile data importer. This shortcoming results in the need for file format and image shape conversion

steps. Furthermore, multiple tools often need to be combined to cover the whole workflow, from training data creation to applying trained models.

Again, further processing steps may be required to enable tool compatibility. For many applications, it is not (yet) possible to do without own

annotated training data. Interactive cropping functionalities are helpful in this case and enable an efficient annotation for dense-growing organisms.

Nevertheless, this feature has not yet been included in cell segmentation software. Note: fluorescence images have been inverted for Omnipose [13],

and phase contrast images have been inverted for Cellpose [14] for better results.

https://doi.org/10.1371/journal.pone.0277601.g001
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starts with training data creation, data handling and loading, model training, model evaluation

—these steps may be iterated until the model is suitably accurate—and finally, the application

of trained models to experimental data. Integrating all needed steps in a single, highly auto-

mated toolbox is desirable from a user perspective. In particular, the data management, the

training data creation, and the training of the deep learning models need to be user-friendly

and time efficient, e.g., by using pre-labeling with subsequent manual corrections and full

automation of routine steps. Thus far, deep learning approaches for the segmentation of bio-

logical data either lack a smooth training data creation and retraining workflow or a data man-

agement system like OMERO [15]. Recent examples are Misic for the high-throughput cell

segmentation of complex bacterial communities [16] and Omnipose for robust segmentation

of bacteria and other elongated cell shapes [14]. Fig 1 summarizes some typical barriers for

end users when using cell segmentation software. Moreover, a survey of 704 National Science

Foundation principal investigators identified the current and future data analysis needs (i) suf-

ficient data storage, (ii) updated analysis software, (iii) training on data management and

metadata, (iv) support for bioinformatics and analysis, and (v) training on basic computing

and scripting [17], which shows that there is a need for easy-to-use and state-of-the-art analysis

tools with standardized data management.

This paper presents microbeSEG, an open-source deep learning-based segmentation tool

that uses the freely available OMERO [15] for data and metadata management. microbeSEG is

a tool tailored to instance segmentation of various cell morphologies and imaging techniques.

In contrast to other solutions, microbeSEG covers the whole processing pipeline needed for

image analysis: users can easily create training datasets, annotate cells with the jointly devel-

oped annotation toolkit ObiWan-Microbi [18], and train and apply deep learning models—

without any conversion steps or programming. Due to the use of OMERO and its versatile

data importer, supporting over 150 image formats, data management is straightforward and

user-friendly. Furthermore, we show that accurate cell segmentation is possible even with

short training data creation times and without expert knowledge. microbeSEG provides pow-

erful deep learning-based cell segmentation in an easy-to-use tool and is publicly available at

https://github.com/hip-satomi/microbeSEG. In the remainder of this work, the microbeSEG

functionalities and workflow are introduced, the workflow efficiency is evaluated, and the key

features of available cell segmentation software are compared.

Materials and methods

Fig 2 provides an overview of the microbeSEG functionalities and its needed components,

OMERO for data management and ObiWan-Microbi, a jointly developed tool for manual

annotation. The key features of our new software are the use of OMERO and the completeness

of the workflow, which includes time-efficient interactive training data crop selection, a simple

but effective step that has not been included in the software solutions we have reviewed.

microbeSEG facilitates deep learning for biologists since no data format conversion steps are

needed for data annotation, model training, and inference. Such steps are required when tools

need to be combined that are not designed to work together, and no data management system

providing file format standards is used. The functionalities and the components of microbe-

SEG are described in this section. S1 Fig shows the graphical user interface.

OMERO data management

OMERO is an open-source software platform for accessing and using a wide range of biologi-

cal data and provides a unified interface for images, matrices, and tables [15]. Over 150 image

formats can be imported with the OMERO.insight desktop client. Thereby, data are organized
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Fig 2. microbeSEG overview. OMERO is used for data management since it provides a versatile data importer and standardizes file handling [15]. Data can be viewed

in the browser with the OMERO.web client. microbeSEG offers training data creation, training, evaluation, and inference functionalities. The jointly developed toolkit

ObiWan-Microbi is used for manual annotation and result correction [18].

https://doi.org/10.1371/journal.pone.0277601.g002

PLOS ONE microbeSEG: A deep learning software tool with OMERO data management for efficient cell segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0277601 November 29, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0277601.g002
https://doi.org/10.1371/journal.pone.0277601


into projects and datasets. After the import, the data can be processed with microbeSEG. With

the OMERO.web client, imported data, microbeSEG training data, and microbeSEG results

can easily be accessed and viewed in the browser.

Training data creation

microbeSEG training sets are managed as OMERO datasets. When adding a new training set

to OMERO using the graphical user interface of microbeSEG, a crop size needs to be selected.

The crop size selection is required since annotating whole images or frames is tedious and

time-consuming, e.g., for frames with microbial colonies of hundreds or thousands of cells.

More efficiently is to annotate smaller crops showing fewer cells (see Fig 1) since the cropping

enables covering more image and cell features in the same annotation time, resulting in a

more diverse training set. Therefore, crop proposals of selected files can be viewed and added

to the training set (Fig 3a). Up to three crops—depending on the image and crop size—ran-

domly extracted from non-overlapping image regions are shown per frame and can interac-

tively be selected and uploaded to OMERO. When trained models are already available, pre-

labeling allows for identifying areas where the segmentation fails and improvements are

needed (Fig 3b). In addition, this approach reduces the annotation time for correctly or par-

tially segmented cells. Selected crops are automatically assigned to a training, a validation or a

test subset. However, there is also an option for an explicit assignment. Furthermore, anno-

tated datasets, e.g., publicly available training data, can be imported.

The training data crops can be annotated with ObiWan-Microbi, an open-source microser-

vice platform for segmentation ground truth annotation in the cloud [18]. The Angular- and

Ionic-based web app connects to the OMERO data backend and has been developed jointly

with microbeSEG. In addition, to the microbeSEG pre-labeling, Omnipose [14] and Cellpose

[13] can be used.

Model training and evaluation

Segmentation methods. In microbeSEG, two deep learning-based instance segmentation

methods are implemented: (i) a simple semantic-based method with multi-class output, i.e.,

Fig 3. Crop creation interface. Automatically proposed crops can be selected and uploaded to OMERO (a). The crop proposals are extracted randomly from different

non-overlapping image regions (the left crop originates from the left image region, and the right crop from the right). For the pre-labeling, it is possible to upload only

the image or the image with its prediction (b). The image-only upload is helpful when the pre-label predictions require too many manual corrections.

https://doi.org/10.1371/journal.pone.0277601.g003
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background, cell interior, and cell boundary (see Fig 4b), and (ii) a distance transform-based

method (see Fig 4c) [19, 20]. The latter method (ii) has proven its applicability for phase con-

trast, bright field, and fluorescence images for diverse cell morphologies in the Cell Tracking

Challenge (http://celltrackingchallenge.net/) [19, 21] where the method currently holds nine

top-three rankings as participants KIT-GE (2) and KIT-GE (3). The simple boundary method

is easy to interpret and serves as a baseline. Both methods are based on the U-Net convolu-

tional neural network [22], with the distance method using two decoders, one for each pre-

dicted output. The single-decoder U-Net has about 34 million parameters and the double-

decoder U-Net has 46 million. However, the network parameters are automatically reduced to

a minimum of 2 million and 3 million, respectively, if not enough memory is available. In the

seeded watershed-transform-based post-processing, touching instances are split using the cell

boundary prediction or the neighbor distance prediction. The distance method post-process-

ing has two parameters: a threshold for adjusting the cell size and a threshold for adjusting the

seed extraction.

Training. For training on a selected annotated training set, the segmentation method, the

batch size, the optimizer, and how many models should be trained need to be specified. Adam

[23] and Ranger [24] are available as optimizers, each with its own pre-defined settings, i.e.,

start learning rate, minimum learning rate, and learning rate scheduler (reduce learning rate

on validation loss plateau). The default settings are: distance method, Ranger optimizer, train-

ing of five models, and a batch size of four. Usually, the default settings are sufficient, but the

user may reduce the batch size if memory availability is limited. Flip, rotation, scaling, contrast,

blur, and noise augmentations are applied during training. The maximum number of training

epochs is set automatically depending on the dataset and crop size. In addition, a stopping cri-

terion depending on the maximum number of training epochs and validation loss improve-

ment is applied. A weighted sum of cross entropy loss and channel-wise Dice loss is used for

the boundary method. The distance method is trained with a smooth L1 loss.

Evaluation. Trained models can be evaluated on the automatically split test set. Thereby,

appropriate parameters are set for the post-processing of the distance method, i.e., the cell size

adjustment and the seed extraction threshold. A slightly modified version of the aggregated

Jaccard index AJI [25] is used as the evaluation measure. The modification AJI+ prevents

overpenalization by using a one-to-one mapping instead of a one-to-many mapping for the

predicted objects [26, 27]. The AJI+ score ranges from 0 to 1, with 1 indicating perfect segmen-

tation. The mean AJI+ score and the standard deviation over the single test images of each

evaluated model are saved in a csv file.

Fig 4. Training data representations of the two microbeSEG methods. From the ground truth (a—instances: color-

coded), the boundary representation (b—cell interior: gray, cell boundary: white) and the distance representations (c—

distance to background, inverse distance to neighbors) can be computed. A deep learning model is trained to predict

either the boundary representation or the distance representations, and the single instances are recovered in the post-

processing.

https://doi.org/10.1371/journal.pone.0277601.g004
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Inference and result export

The best evaluated model with its parameter set is selected automatically for inference. How-

ever, the user can also select the model manually. If a not yet evaluated model is selected, the

default thresholds are used for the distance method, which may result in (slightly) too large or

too small cells for this method. The segmentation results can be attached to the corresponding

OMERO image as polygon regions of interest, which enables joint storage of images and

results, and can be viewed with the OMERO.web client. In addition, the cell counts, mean cell

area, mean cell minor and major axis length, and the total cell area are determined. The result

export includes: the original image (.tif), intensity-coded instance segmentation masks (.tif), a

cell outlines image (.tif), the original image overlaid with the cell outlines (.tif), and analysis

results (.csv).

Implementation, installation, and dependencies

microbeSEG is implemented in Python [28] and uses PyTorch as the deep learning framework

[28, 29]. The graphical user interface is built with PyQt [30]. The software and the source code

are available under the MIT license in our code repository. A requirements file and a step-by-

step guide are provided in the code repository for easy installation and usage. Access to an

OMERO server is required for running microbeSEG. For testing purposes, a demo server

account can be requested from the OME team in Dundee: http://qa.openmicroscopy.org.uk/

registry/demo_account/. Furthermore, an OMERO server can be set up during the ObiWan-

Microbi installation, which is available at https://github.com/hip-satomi/ObiWan-Microbi.

microbeSEG dataset

Microbe data shown in this paper were acquired with a fully automated time-lapse phase con-

trast microscope setup using a 100x oil immersion objective. Cultivation took place inside a

special microfluidic cultivation device [31]. The assembled microbe training, validation, and

test sets, including 2930 cells, are available online at https://doi.org/10.5281/zenodo.6497715

(see next section).

Results

microbeSEG workflow efficiency

Table 1 shows the microbeSEG segmentation accuracy in terms of the aggregated Jaccard

index AJI+ in dependence of the annotation time on a test set consisting of two microbe types,

i.e., of 721 B. subtilis and 1168 E. coli cells. The 24 test images of size 320px × 320px, 12 for

each species, were annotated by three experts, who cross-checked their annotations. The

microbeSEG user selected and annotated crops from different experimental data than the

experts used. The distance method parameters have been adjusted automatically on the inter-

nal test set of the microbeSEG user. Each of the ten boundary models ended training within 6

minutes, and each of the ten distance models within 18 minutes on a system with an Nvidia

Titan RTX (batch size: four).

Switching from completely manual annotation to correcting pre-labeled image crops after

the initial annotation phase results in more cells annotated per time. Therefore, a model

trained on the dataset annotated in the first 30 minutes has been used. The additional training

data further increase the scores for both cell types, especially for the simpler boundary method,

which requires larger training datasets. The default microbeSEG settings—distance method

and Ranger optimizer—yield better segmentations than the boundary method. Fig 5 shows

exemplary segmentations for the default settings, indicating that reasonable segmentation
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Table 1. microbeSEG accuracy in dependence of annotation time. All methods are evaluated on 12 B. subtilis and 12 E. coli test images. For each microbeSEG setting,

the median aggregated Jaccard index AJI+ out of five trained models is shown. The times include the crop selection.

Manual annotation time Ncrops Ncells Method AJI+ (B. subtilis) AJI+ (E. coli) AJI+ (total)

30 min† 13a 309 boundary (Adam) 0.484 0.653 0.568

distance (Ranger) 0.585 0.729 0.657

30 min† + 15 min‡ 22b 732 boundary (Adam) 0.505 0.687 0.596

distance (Ranger) 0.614 0.731 0.673

pre-trained - - Omnipose 0.478 0.519 0.498

a 8 training, 3 validation, and 2 internal test crops (for post-processing parameter adjustment) of size 320px × 320px.
b 13 training, 5 validation, and 4 internal test crops (for post-processing parameter adjustment) of size 320px × 320px.
† Same training dataset.
‡ With pre-labeling using a distance method model trained on the dataset annotated in the first 30 minutes.

https://doi.org/10.1371/journal.pone.0277601.t001

Fig 5. Exemplary images and segmentation overlays for B. subtilis and E.coli. Shown are the results of the median distance method microbeSEG

models from Table 1. S2 Fig shows the raw network outputs of the microbeSEG model (d) and results for the boundary method.

https://doi.org/10.1371/journal.pone.0277601.g005
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results for the two microbe types can be obtained within 30 minutes of annotation time, even

without utilizing public datasets, pre-training, or pre-labeling. For comparison, Omnipose

[14], a deep learning method pre-trained on a large database of bacterial images with 27 000

annotated cells, yields convincing segmentations of cells but, without retraining, suffers from

the detection of background structures.

Qualitative U2OS cell segmentation results using imported HeLa cell

training data

The import of annotated datasets helps to decrease manual interaction time further or even

makes the need for manual annotations or corrections obsolete in some cases where very simi-

lar training data is available. Fig 6 shows qualitative segmentation results of U2OS cells [32]

with a microbeSEG model trained on HeLa cell data from the Cell Tracking Challenge [33,

34]. Even without annotated U2OS cells, a good segmentation quality is achieved.

Data analysis

For time-lapse experiments, basic analysis results, i.e., cell counts, mean cell area, mean cell

minor/major axis length, and total area, can be exported after segmentation. Possibly needed

manual corrections to reach a virtually error-free segmentation can be applied using ObiWan-

Microbi. The results can easily be plotted using Fiji [35], as Fig 7 shows.

Segmentation tools feature comparison

Table 2 provides an overview of crucial features we believe a cell segmentation tool should

have for ease of use and also shows which software meets these features. Some tools support

only a limited number of data formats, which results in additional conversion steps before the

software can be used. In addition, most tools use no data management system that can store,

visualize, and share data, metadata, and results. However, the support of such a data manage-

ment system and its corresponding file format standards facilitates the use of segmentation

tools. So far, most deep learning software with a graphical user interface focuses on applying

pre-trained models, and model training is not directly possible and requires programming

expertise. Furthermore, training data annotation can require the use of incompatible annota-

tion tools leading to further conversion steps. microbeSEG is the only tool that covers all key

features (together with the jointly developed ObiWan-Microbi).

Fig 6. Segmentation of U2OS cells from the BBBC039 dataset [32]. The microbeSEG segmentation model (default

settings) has been trained on HeLa cells from the Cell Tracking Challenge [33, 34].

https://doi.org/10.1371/journal.pone.0277601.g006
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Discussion

Utilizing ObiWan-Microbi for training data annotation, microbeSEG covers the whole pipe-

line from training data creation, training, evaluation, and inference. Both tools are designed to

work together seamlessly and use OMERO for data management. The optimized workflow

allows producing high-quality segmentation results in reasonable annotation time. Our results

Fig 7. Exemplary microbeSEG segmentation (a) and analysis results (b) for a growing C. glutamicum colony. The

results can easily be viewed in Fiji. S1 Video shows a video of the segmentation results of the growing colony.

https://doi.org/10.1371/journal.pone.0277601.g007

Table 2. Cell segmentation software key feature comparison. Considered are only tools with a graphical user interface since end users should not need programming

expertise. Non deep learning segmentation methods may require expert knowledge for parametrization and are not state-of-the-art anymore. Data format support does

not necessarily mean that each image can be processed: if no data management system (DMS) with metadata support is used, e.g., the channel dimension can be the first or

the last dimension for.tif files, and the method may have requirements on the channel dimension position. ━: feature not fulfilled/supported, : feature only fulfilled/sup-

ported with restrictions,✔: feature fulfilled/supported.

Software DMS Data formats Deep learning Cropping Annotation Pre-labeling Training Result corr.

AutoCellSeg [36] ━ .jpg, .png, .tif, .bmp ━ ━ ━ ━ ━ ✔
BacStalk [37] ━ .jpg, .tif ━ ━ ━ ━ ━ ━a

Cellpose/Omnipose [13, 14, 38] ━ .gif, .jpg, .png, .tif ✔ ━ ✔ ✔ ✔ ✔
ChipSeg [10] ━ .tif ━ ━ ━ ━ ━ ━
DeepImageJ [39] (Fiji plugin [35]) ━ > 150b ✔ ━ ━ ━ ━ ━
Misic [16] (napari plugin [40]) ━ > 150b ✔ ━ c ━ ━ ━
Orbit [41] ✔d > 150b e ━ ✔ ━ f ━
StarDist [42] (napari plugin [40]) ━ > 150b ✔ ━ c ━ g ━
YeaZ [43] ━ 25 ✔ ━ ━ ━ ━ ✔
YeastSpotter [44] ━ N.A. ✔ ━ ━ ━ ━ ━
microbeSEG ✔d > 150b ✔ ✔ ✔h ✔ ✔ ✔h

a Only deletion of objects, no shape refinement or correction of false negatives, merges, and split objects.
b OME Bio-Formats support (napari needs the napari-aicsimageio plugin: https://www.napari-hub.org/plugins/napari-aicsimageio).
c In principle possible with napari (plugins) but no training functionality with the graphical user interface.
d OMERO.
e With copy and paste of a segmentation script into the script editor: https://www.orbit.bio/deep-learning-object-segmentation/
f Only with a Python script outside of Orbit.
g Not within the graphical user interface, but in principle within the napari IPython console.
h With the associated tool ObiWan-Microbi.

https://doi.org/10.1371/journal.pone.0277601.t002
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indicate that switching to pre-label corrections is a better strategy than annotating manually

when suitably accurate models have been trained since more cells can be annotated per time.

In our experiments, we observed that it is a good strategy to correct mainly object-level errors,

i.e., merges, splits, and added or missing cells. As the qualitative segmentation results show,

the AJI+ scores for B. subtilis are mainly limited by size differences and different handling

of cell division events. This discrepancy is due to the different decision boundaries of the

microbeSEG user and the individual expert annotators in this experiment, especially for

the cell division events of the challenging filamentous B. subtilis cells and for the E. coli size.

We assume that when the same person annotates training and test data, the AJI+ scores rise

significantly.

The Omnipose segmentation results show that available software solutions may need

retraining even when pre-trained on a large dataset, e.g., to avoid the segmentation of back-

ground structures on a microfluidic device. However, such solutions can further reduce the

manual annotation time. For instance, ObiWan-Microbi includes Omnipose and Cellpose

pre-labeling. The prerequisite for saving annotation time is that these solutions work quite

well for the present data. A drawback is, however, that object shapes may not match as well as

with manual annotation or the microbeSEG pre-labeling, which enables learning the annota-

tor’s object size decision boundary.

Once a large and diverse annotated dataset is established, further annotation and model

training is required only for significant changes in the experimental setup or for specific cases

where the segmentation fails. Thereby, the microbeSEG crop selection with pre-labeling allows

adding exactly those new training data where segmentation errors occur. A drawback of the

training data crop creation is that for large image sizes, a small selected crop size, and low

object density, all proposed crops of a frame could show no cells. This behavior can for

example occur in a 2048px × 2048px image with the smallest selectable crop size of 128px ×
128px and less than ten small objects. In such a case, a larger crop size (crop sizes up to

1024px × 1024px are available) needs to be selected. Another limitation of microbeSEG is that

the segmentation method does not, like many others, support the segmentation of overlapping

objects.

In summary, we believe that the major concern about deep learning for cell segmentation,

which is that extensive and time-consuming annotation of training data is required, has been

overcome with our tool microbeSEG, which provides an efficient workflow and an accurate

segmentation method. Our segmentation software feature comparison has shown that no

other segmentation tool provides all functionalities needed for the efficient segmentation of

microbes. Certainly, microbeSEG can also be applied for the segmentation of cell nuclei or

other objects. To further facilitate the data annotation for microbeSEG users, label inspection

strategies [45] and training data simulators are of particular interest. A long-term goal is to

leverage deep learning for 3D applications, e.g., to study plant-microbe interactions [46]. Inte-

grating other state-of-the-art segmentation methods like Omnipose or StarDist into our tool

with its complete workflow is another possible future direction.

Supporting information

S1 Fig. Graphical user interface.

(PDF)

S2 Fig. Raw distance method and boundary method predictions. Shown are raw and post-

processed predictions of the median distance method microbeSEG model (45 min) and of the

boundary method microbeSEG model (45 min) reported in Table 1. Multi-channel predictions
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are color-coded (red: background, green: cell interior, blue: cell boundary).

(PDF)

S1 Video. Segmentation results of a growing C. glutamicum colony.

(MP4)
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39. Gómez-de Mariscal E, Garcı́a-López-de Haro C, Ouyang W, Donati L, Lundberg E, Unser M, et al. Dee-

pImageJ: A user-friendly environment to run deep learning models in ImageJ. Nature Methods. 2021;

18:1192–1195. https://doi.org/10.1038/s41592-021-01262-9 PMID: 34594030

40. Sofroniew N, Lambert T, Evans K, Nunez-Iglesias J, Bokota G, Winston P, et al. napari: a multi-dimen-

sional image viewer for Python. Zenodo. 2022;.

41. Stritt M, Stalder AK, Vezzali E. Orbit Image Analysis: An open-source whole slide image analysis tool.

PLOS Computational Biology. 2020; 16(2). https://doi.org/10.1371/journal.pcbi.1007313 PMID:

32023239

42. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-Convex Polygons. In: Frangi AF,
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