001     916305
005     20221221131717.0
024 7 _ |a 10.25493/MGKP-Z5T
|2 doi
037 _ _ |a FZJ-2022-06106
100 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 0
|u fzj
245 _ _ |a Julich-Brain Atlas, cytoarchitectonic maps (v3.0)
260 _ _ |c 2022
|b EBRAINS
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1671616272_30090
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a This dataset contains the Julich-Brain Atlas, Cytoarchitectonic maps in different coordinate spaces. The parcellation provided by the Atlas is derived from the individually released probability maps (PMs) of cytoarchitectonically defined cortical and subcortical brain regions. For the whole-brain parcellation, the available PMs are combined into a maximum probability map (MPM) by considering for each voxel the probability of all cytoarchitectonic brain regions, and determining the most probable assignment. In later versions of this dataset, gap maps complement the maximum probability map of the cytoarchitectonically defined brain regions to achieve full cortical coverage. There are two sets of PMs with a different degree of parcellation included. The set with 157 PMs corresponds to the usual granularity of the Julich-Brain Atlas. This set was used for the calculation of the MPM. Furthermore, a set with 175 PMs is included. This dataset contains, for some regions, more detailed cytoarchitectonic parcellations. For technical reasons, this finer parcellation is only representable via individual PMs due to the spatial resolution of the reference space, i.e., the MPM for the set of 175 PMs is not available. In addition, a set of cortical areas of the MPM is available on the freesurfer fsaverage surface. Note that methodological improvements and integration of new brain structures may lead to small deviations in the parcellation between released versions of this dataset.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neuroscience
|2 Other
700 1 _ |a Mohlberg, Hartmut
|0 P:(DE-Juel1)131660
|b 1
|u fzj
700 1 _ |a Bludau, Sebastian
|0 P:(DE-Juel1)131636
|b 2
|u fzj
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 3
|u fzj
700 1 _ |a Lewis, Lindsay B.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 5
|u fzj
700 1 _ |a Pieperhoff, Peter
|0 P:(DE-Juel1)131666
|b 6
|u fzj
773 _ _ |a 10.25493/MGKP-Z5T
909 C O |o oai:juser.fz-juelich.de:916305
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131666
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21