001     916363
005     20231027114350.0
024 7 _ |a 10.1002/rob.22122
|2 doi
024 7 _ |a 1556-4959
|2 ISSN
024 7 _ |a 0741-2223
|2 ISSN
024 7 _ |a 1097-4563
|2 ISSN
024 7 _ |a 1556-4967
|2 ISSN
024 7 _ |a 2128/33859
|2 Handle
024 7 _ |a WOS:000868525100001
|2 WOS
037 _ _ |a FZJ-2022-06164
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Kierdorf, Jana
|0 0000-0003-1145-1555
|b 0
|e Corresponding author
245 _ _ |a GrowliFlower: An image time‐series dataset for GROWth analysis of cauLIFLOWER
260 _ _ |a New York, NY
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675435055_29945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we present GrowliFlower, a georeferenced, image-based unmanned aerial vehicle time-series dataset of two monitored cauliflower fields (0.39 and 0.60 ha) acquired in 2 years, 2020 and 2021. The proposed dataset contains RGB and multispectral orthophotos with coordinates of approximately 14,000 individual cauliflower plants. The coordinates enable the extraction of complete and incomplete time-series of image patches showing individual plants. The dataset contains the collected phenotypic traits of 740 plants, including the developmental stage and plant and cauliflower size. The harvestable product is completely covered by leaves, thus, plant IDs and coordinates are provided to extract image pairs of plants pre- and post-defoliation. In addition, to facilitate classification, detection, segmentation, instance segmentation, and other similar computer vision tasks, the proposed dataset contains pixel-accurate leaf and plant instance segmentations, as well as stem annotations. The proposed dataset was created to facilitate the development and evaluation of various machine-learning approaches. It focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to advance automation in agriculture. Two baseline results of instance segmentation tasks at the plant and leaf level based on labeled instance segmentation data are presented. The complete GrowliFlower dataset is publicly available (http://rs.ipb.uni-bonn.de/data/growliflower/).
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Junker-Frohn, Laura Verena
|0 P:(DE-Juel1)168454
|b 1
|u fzj
700 1 _ |a Delaney, Mike
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Olave, Mariele Donoso
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Burkart, Andreas
|0 P:(DE-Juel1)145906
|b 4
700 1 _ |a Jaenicke, Hannah
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 6
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 7
|u fzj
700 1 _ |a Roscher, Ribana
|0 P:(DE-Juel1)186079
|b 8
773 _ _ |a 10.1002/rob.22122
|g p. rob.22122
|0 PERI:(DE-600)2224269-7
|n 2
|p 173-192
|t Journal of field robotics
|v 40
|y 2023
|x 1556-4959
856 4 _ |u https://juser.fz-juelich.de/record/916363/files/Journal%20of%20Field%20Robotics%20-%202022%20-%20Kierdorf%20-%20GrowliFlower%20An%20image%20time%E2%80%90series%20dataset%20for%20GROWth%20analysis%20of%20cauLIFLOWER.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916363
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168454
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-19
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21