000916364 001__ 916364
000916364 005__ 20240313103121.0
000916364 0247_ $$2doi$$a10.48550/arXiv.2211.16592
000916364 0247_ $$2Handle$$a2128/33347
000916364 037__ $$aFZJ-2022-06165
000916364 041__ $$aEnglish
000916364 1001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b0$$eCorresponding author
000916364 245__ $$aSequence learning in a spiking neuronal network with memristive synapses
000916364 260__ $$bArXiv$$c2022
000916364 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1672815674_11195
000916364 3367_ $$2ORCID$$aWORKING_PAPER
000916364 3367_ $$028$$2EndNote$$aElectronic Article
000916364 3367_ $$2DRIVER$$apreprint
000916364 3367_ $$2BibTeX$$aARTICLE
000916364 3367_ $$2DataCite$$aOutput Types/Working Paper
000916364 520__ $$aBrain-inspired computing proposes a set of algorithmic principles that hold promise for advancing artificial intelligence. They endow systems with self learning capabilities, efficient energy usage, and high storage capacity. A core concept that lies at the heart of brain computation is sequence learning and prediction. This form of computation is essential for almost all our daily tasks such as movement generation, perception, and language. Understanding how the brain performs such a computation is not only important to advance neuroscience but also to pave the way to new technological brain-inspired applications. A previously developed spiking neural network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware that holds promise for efficiently running this type of algorithm is neuromorphic hardware. It emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate. Memristive devices have been identified as potential synaptic elements in neuromorphic hardware. In particular, redox-induced resistive random access memories (ReRAM) devices stand out at many aspects. They permit scalability, are energy efficient and fast, and can implement biological plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model. We implement and simulate the model including the ReRAM plasticity using the neural simulator NEST. We investigate the effect of different device properties on the performance characteristics of the sequence learning model, and demonstrate resilience with respect to different on-off ratios, conductance resolutions, device variability, and synaptic failure.
000916364 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000916364 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000916364 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000916364 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000916364 588__ $$aDataset connected to DataCite
000916364 650_7 $$2Other$$aNeural and Evolutionary Computing (cs.NE)
000916364 650_7 $$2Other$$aEmerging Technologies (cs.ET)
000916364 650_7 $$2Other$$aFOS: Computer and information sciences
000916364 7001_ $$0P:(DE-Juel1)174486$$aSiegel, Sebastian$$b1$$ufzj
000916364 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b2
000916364 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3
000916364 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4$$ufzj
000916364 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk J.$$b5
000916364 773__ $$a10.48550/arXiv.2211.16592
000916364 8564_ $$uhttps://juser.fz-juelich.de/record/916364/files/2211.16592.pdf$$yOpenAccess
000916364 909CO $$ooai:juser.fz-juelich.de:916364$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000916364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b0$$kFZJ
000916364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174486$$aForschungszentrum Jülich$$b1$$kFZJ
000916364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b2$$kFZJ
000916364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
000916364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000916364 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000916364 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000916364 9132_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916364 9141_ $$y2022
000916364 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916364 920__ $$lyes
000916364 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000916364 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000916364 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000916364 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
000916364 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x4
000916364 9801_ $$aFullTexts
000916364 980__ $$apreprint
000916364 980__ $$aVDB
000916364 980__ $$aUNRESTRICTED
000916364 980__ $$aI:(DE-Juel1)INM-6-20090406
000916364 980__ $$aI:(DE-Juel1)IAS-6-20130828
000916364 980__ $$aI:(DE-Juel1)INM-10-20170113
000916364 980__ $$aI:(DE-Juel1)PGI-7-20110106
000916364 980__ $$aI:(DE-Juel1)PGI-10-20170113
000916364 981__ $$aI:(DE-Juel1)IAS-6-20130828