GPU ACCELERATORS AT JSC
SUPERCOMPUTING INTRODUCTION COURSE

23 November 2022 | Andreas Herten, Kaveh Haghighi-Mood | Forschungszentrum Jiilich

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association Forschungszentrum | CENTRE

Outline

GPUs at JSC Programming GPUs
JUWELS Libraries
JUWELS Cluster Directives
JUWELS Booster CUDA C/C++
JURE(,:A bC Performance Analysis
GPU Arc.h|.tecture. ' Advanced Topics
Empirical Motivation Advanced Topics

Comparisons
GPU Architecture
Summary

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 1141

JUWELS Cluster - Jiilich’s Scalable System
= 2500 nodes with Intel Xeon CPUs (2 x 24 cores)
= 46 + 10 nodes with 4 NVIDIA Tesla V100 cards (16 GB memory)
= 10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance (Top500: #86)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 2141 Forschungszentrum CENTRE

JUWELS Booster - Scaling Higher!
= 936 nodes with AMD EPYC Rome CPUs (2 x 24 cores)
= Each with 4 NVIDIA A100 Ampere GPUs (each: Froarc ;_97‘5 TFLOP/s, 40 GB memory)
= InfiniBand DragonFly+ HDR-200 network; 4 x 200 Gbit/s per node

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 3141 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

= #1 Europe
= #8 World
= #4* Top/Green500

JUWELS Booster - Scaling Higher!
= 936 nodes with AMD EPYC Rome CPUs (2 x 24 cores)
= Each with 4 NVIDIA A100 Ampere GPUs (each: ""*/'*" 19> TFLOP /s, 40 GB memory)
= InfiniBand DragonFly+ HDR-200 network; 4 x 200 Gbit/s per node

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 3141 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://www.top500.org/lists/top500/2021/11/

JURECA DC - Multi-Purpose
= 768 nodes with AMD EPYC Rome CPUs (2 x 64 cores)
= 192 nodes with 4 NVIDIA A100 Ampere GPUs
= InfiniBand DragonFly+ HDR-100 network

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 4141 Forschungszentvum CENTRE

GPU Architecture

Status Quo Across Architectures

Performance

Theoretical Peak Performance, Double Precision

o .
3. 3 :
g10 e gD s Oy s B 7480 (KNG T N
e}
3
T
o
INTEL Xeon CPUs ——
® . . NVIDIA Tesla GPUs — [l —
102 - - - B T T R R =
. . . AMD Radeon GPUs —@)—
5 . . i
o) oS : : : : INTEL Xeon Phis —WF—
< o &
B + W ; ; ; ; ‘)
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 23 November 2022 Slide 6141

Status Quo Across Architectures
Memory Bandwidth

Theoretical Peak Memory Bandwidth Comparison

Xeon Phi 7
H S o Tesa kBT B :
o) <™ :
3 .
102 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
WO
INTEL Xeon CPUs ——
NVIDIA Tesla GPUs — [l —
) S of .
0 &> G o . . .
@@'L 55‘55% W ¥ 3 * ! ‘ 3 AMD Radeon GPUs —@—
: : : : : INTEL Xeon Phis ——
10 L L L L L L L
2008 2010 2012 2014 2016 2018 2020
End of Year
Member of the Helmholtz Association 23 November 2022 Slide 6141

CPU vs. GPU

A matter of specialties

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 7141 Forschungszentvum CENTRE

CPU vs. GPU

A matter of specialties

Transporting one Transporting many

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 7141 Forschungszentvum CENTRE

CPU vs. GPU

Chip

LU
Control
U

L

Cache

@) JULICH | &=
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 8141 Forschungszentrum CENTRE

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)

Member of the Helmholtz Association 23 November 2022 Slide 9141

Control

HBM2
1555GB/s
DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)

Member of the Helmholtz Association 23 November 2022 Slide 9141

Control

HBM2
1555GB/s
DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually

Host

- = o

Il

Device

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 9141

GPU Architecture Design

GPU optimized to hide latency
= Memory
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s)
= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

O

Member of the Helmholtz Association 23 November 2022 Slide 9141

9

Host

Control

JULICH

Forschungszentrum

Cache

DRAM

Device

JULICH
SUPERCOMPUTING
CENTRE

GPU Architecture Design

Host
GPU optimized to hide latency
= Memory Contel
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s) Cache

= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

DRAM

Copy

O

V100 Al100
32 GB RAM, 900 GB/s 40 GB RAM, 1555 GB/s

L]

O | @) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 9141 J Forschungszentrum

Device

JULICH
SUPERCOMPUTING
CENTRE

GPU Architecture Design

Host
GPU optimized to hide latency
= Memory Contel
= GPU has small (40 GB), but high-speed memory 1555 GB/s
= Stage data to GPU memory: via PCle 4 bus (32 GB/s) Cache

= Stage automatically (Unified Memory), or manually
= Two engines: Overlap compute and copy

DRAM

Copy

O

= SIMT

V100 Al100
32 GB RAM, 900 GB/s 40 GB RAM, 1555 GB/s

L]

O | @) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 9141 J Forschungszentrum

Device

JULICH
SUPERCOMPUTING
CENTRE

SIMT

Scalar
SIMT = SIMD & SMT
A + B = |G
A + [B] = [a
Al + B2 = |G
L] CPU: A+ B3 = |G
= Single Instruction, Multiple Data (SIMD)
‘J JULICH JULICH
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 10141 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay B, C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 10141 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By C1
+ -
Ay B, C,
= CPU: A B &

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 10141 Forschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao Bo Co
A By ¢
+ -
Ay By C
L] CPU: As B3 C3

= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)

SMT

Thread

Core
Thread

=

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 10141 Furschungszentrum CENTRE

SIMT

Vector
SIMT = SIMD ¢ SMT
Ao By Co
AL By G
n -
Ay B, C,
= CPU: 4 B &
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
'] JULICH
Member of the Helmholtz Association 23 November 2022 slide 10141 ‘J :!rgunLgslzgrt! gléf'_ErFSEOMPUT\NG

SIMT

Vector
SIMT = SIMD @ SMT - - -
Ay By C1
N -
Ay By C
= CPU: A Bs G
= Single Instruction, Multiple Data (SIMD) SMT
= Simultaneous Multithreading (SMT) —
= GPU: Single Instruction, Multiple Threads (SIMT) Core
SIMT

i

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 10141 Furschungszentrum CENTRE

SIMT

SIMT = SIMD © SMT

= CPU:
= Single Instruction, Multiple Data (SIMD)
= Simultaneous Multithreading (SMT)
= GPU: Single Instruction, Multiple Threads (SIMT)
= CPU core = GPU multiprocessor (SM)
= Working unit: set of threads (32, a warp)
= Fast switching of threads (large register file)

» Branching ifC*

Member of the Helmholtz Association 23 November 2022 Slide 10141

Vector
Ao Bo Co
A B (o)
+ -

Ay B, C,
As B3 C3
SMT

Thread

Core

Thread
SIMT

i

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

SI M T Vector

SIMT = SIMD & SMT
Ay Bo Co
A By G
+ =
Ay B, C,
A3 B3 &

Thread

Core
Thread

SIMT

L

Member of the Helmholtz Association 23 November 2022 Slide 10141

g JULICH | 5 upomne

Forschungszentrum CENTRE

SI M T Vector

SIMT = SIMD & SMT
Ay Bo Co
A By G
+ =
Ay B, C,
A3 B3 &

Thread

Core
Thread

SIMT

L

Member of the Helmholtz Association 23 November 2022 Slide 10141

g JULICH | 5 upomne

Forschungszentrum CENTRE

SIMT

SIMT — SIMD &~ SMT

Member of the Helmholtz Association

Multiprocessor

Wrsz sz

wrsz sz

sz sz

wrsz sz

Wraz sz

Wraz sz

a2 sz

Wz sz

wrsz sz

‘Warp Scheduler (32 threadicik)
Dispateh Unit (32 thread/ck)

Register File (16,384 x 32-bit)

Foa2 st
Foa2 pesz
Foa2 prsz
Fow2 sz
Fos2 posz
o2 sz
Fo2 sz
st e

‘Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/ck)

Register File (16,384 x 32-bit)

R o
B o
frsafesd s
fraafesd e
TENSOR CORE
B o
PR o
R o
R o

wraz raz
wraa raz
wrsz rsz
wrs2 Tz

wraz Tz
wraz raz
wraz raz
wrsz wrs
wrsz wrsz
wrsz nrsz

Warp Scheduler (32 threadicik)
Dispateh Unit (32 threadclk)

Register File (16,384 x 32-bit)

PR e
P e
R
P e

TENSOR CORE
Fafes e
FEEE e
R e
epsa

02
Dispatch Unit (32 threadclk)

Register File (16,384 x 32-bit)

R e
L e
s e
e
TENSOR CORE
s e
e reos
PR reos

23 November 2022

Slide 10141

9

Vector

Ao
Ay
Ay

As

Bo Co

By G
+ =

B, @

B3 @

Thread

Core
Thread

SIMT

L

JULICH | srcreonrumne

Forschungszentrum CENTRE

A100vs H100

Comparison of current vs. next generation

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 11141 Forschungszentrum CENTRE

A100vs H100

Comparison of current vs. next generation

A100 H100

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 11141 Forschungszentvum CENTRE

A100vs H100

Comparison of current vs. next generation

A100

[rm——

e—
[—

o (1,384 32581

Member of the Helmholtz Association 23 November 2022

TENSOR CORE. TENSOR CORE
4" GENERATION 4" GENERATION

Re || T TENSORCORE
4" GENERATION Pt 4" GENERATION

‘Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory.

JULICH | srcreonrumne

Slide 11141 Forschungszentrum | CENTRE

CPU vs. GPU

Let’s summarize this!

Optimized for low latency

+

+
+
+
+

Large main memory

Fast clock rate

Large caches

Branch prediction

Powerful ALU

Relatively low memory bandwidth
Cache misses costly

Low performance per watt

Member of the Helmholtz Association 23 November 2022

Optimized for hlgh throughput

High bandwidth main memory
Latency tolerant (parallelism)
More compute resources

High performance per watt

— Limited memory capacity

— Low per-thread performance
— Extension card

+

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 12141 J Forschungszentrum

Programming GPUs

Preface: CPU

A simple CPU program!

SAXPY: y = aX + y, with single precision
Part of LAPACK BLAS Level 1

void saxpy(int n, float a, float * x, float * y) {
for (int 1 = 0; 1 < n; i++)
y[i] = a = x[i] + y[i];
}

int a = 42;

int n = 10;

float x[n], yInl;
// Fill x, y

saxpy(n, a, x, y);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 14141

http://www.netlib.org/lapack/

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 15141 J Forschungszentrum

Summary of Acceleration Possibilities

Application

Programming
Languages

Libraries Directives

Drop-in Easy Flexible
Acceleration Acceleration Acceleration

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 15141 J Forschungszentrum

Libraries _ _
Programming GPUs is easy:

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 16141 Forschungszentrum CENTRE

Libraries _ _
Programming GPUs is easy:

Use applications & libraries

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 16141 Forschungszentrum CENTRE

Libraries _ _
Programming GPUs is easy:

Use applications & libraries

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 16141 Forschungszentrum CENTRE

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE

CuBLAS

cuDNN

{A} ArRRAYFIRE

Numba

e
- f W CoPy
CuRAND 4
CUDA Math

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 16141 Furschungszentrum CENTRE

Libraries
Programming GPUs is easy:

Use applications & libraries

CUSPARSE

cuBLAS

cuDNN

{A} ArRRAYFIRE

Numba

e
- f W CoPy
CuRAND 4
CUDA Math

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 16141 Furschungszentrum CENTRE

CuBLAS

Parallel algebra

= GPU-parallel BLAS (all 152 routines)

= Single, double, complex data types

= Constant competition with Intel’s MKL
= Multi-GPU support

— https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 23 November 2022 Slide 17141

ﬁ

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

CuBLAS

Code example

int a = 42; int n = 10;
float x[n], yI[nI;
// Fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float = d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]1));
cudaMallocManaged(&d_y, n = sizeof(y[0]));

cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), vy, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, v, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 23 November 2022

Slide 18141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CuBLAS

Code example

int a = 42; int n = 10;
float x[n], y[nl;

// fill x, y

cublasHandle_t handle; P
cublasCreate(&handle);
float = d_x, * d_y;

cudaMallocManaged(&6d_x, n * sizeof(x[0]));e— Allocate GPU memory

cudaMallocManaged(sd_y, n * sizeof(y[0]));

cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);e6— Copy data to GPU

cublasSetVector(n, sizeof(y[0]), vy, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);e— Call BLAS routine
Copy result to host

cudaFree(d_x); cudaFree(d_y); Finalize

cublasDestroy(handle);eo—— ‘ .
J JULICH

Forschungszentrum

cublasGetVector(n, sizeof(y[0]), d_y, 1, vy, 1);

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 23 November 2022 Slide 19141

Programming GPUs
Directives

GPU Programming with Directives

Keepin’ you portable
= Annotate serial source code by directives

#pragma acc loop
for (int i = 0; i < 1; i++) {};

Member of the Helmholtz Association 23 November 2022 Slide 21141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

GPU Programming with Directives

Keepin’ you portable

= Annotate serial source code by directives
#pragma acc loop
for (int i = 0; i < 1; i++) {};

= OpenAcCC: Especially for GPUs; OpenMP: Has GPU support
= Compiler interprets directives, creates according instructions

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 21141 J

Forschungszentrum

GPU Programming with Directives

Keepin’ you portable

= Annotate serial source code by directives

#pragma acc loop
for (int i = 0; i < 1; i++) {};

= OpenAcCC: Especially for GPUs; OpenMP: Has GPU support
= Compiler interprets directives, creates according instructions

Pro Con
= Portability = Only few compilers
= Other compiler? No problem! To it, it’s a = Not all the raw power available
serial program = Alittle harder to debug
= Different target architectures from same

code
= Easy to program

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 21141 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

OpenACC/ OpenMP

Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; 1 < n; i++)

} y[il = a = x[i] + y[i];

float a = 42;

int n = 10;

float x[n], y[nI;
// fill x, y

saxpy_acc(n, a, X, y);

Member of the Helmholtz Association 23 November 2022 Slide 22141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

OpenACC/ OpenMP

Code example

void saxpy_acc(int n, float a, float * x, float * y) {

#pragma omp target map(to:x[0:n]) map(tofrom:y[0:n]) loop

for (int i = 0; 1 < n; i++)
y[i]l = a = x[i] + y[il;
}

float a = 42;

int n = 10;

float x[nl, yI[nl;
// fill x, y

saxpy_acc(n, a, X, y);

Member of the Helmholtz Association 23 November 2022

Slide 22141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Programming GPUs
CUDA C/C++

Programming GPUs Directly

Finally...

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 24141 Forschungszentrum CENTRE

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)
= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 24141 J Forschungszentrum

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)
= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source
CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran; and more in NVIDIA HPC SDK

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 24141

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 24141

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

= Choose what flavor you like, what colleagues/collaboration is using
= Hardest: Come up with parallelized algorithm

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 24141

Programming GPUs Directly

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...)

= Platform: Programming language (OpenCL C/C++), API, and compiler
= Targets CPUs, GPUs, FPGAs, and other many-core machines
= Fully open source

CUDA NVIDIA’s GPU platform
= Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, ...
= Only NVIDIA GPUs
= Compilation with nvcc (free, but not open)

clang has CUDA support, but CUDA needed for last step
= Also: CUDA Fortran; and more in NVIDIA HPC SDK
HIP AMD’s unified programming model for AMD (via ROCm) and NVIDIA GPUs
SYCL Intel’s unified programming model for CPUs and GPUs (also: DPC++)

= Choose what flavor you like, what colleagues/collaboration is using
= Hardest: Come up with parallelized algorithm

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 24141 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

@) JULICH| &2
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 25141 Forschungszentrum CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks
= Methods to exploit parallelism:

= Thread
EONN IV

Member of the Helmholtz Association 23 November 2022

Slide 25141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks
= Methods to exploit parallelism:

= Threads
Sy

Member of the Helmholtz Association 23 November 2022

Slide 25141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|

Member of the Helmholtz Association 23 November 2022

Slide 25141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|
- [Block|

Member of the Helmholtz Association 23 November 2022

Slide 25141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|
- [Blocks |

Member of the Helmholtz Association 23 November 2022

Slide 25141

-

9

=

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block|

Member of the Helmholtz Association 23 November 2022

Slide 25141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

= Threads —|Block |

= Threads & blocksin 3D

Member of the Helmholtz Association 23 November 2022

Slide 25141

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA’s Parallel Model

In software: Threads, Blocks

= Methods to exploit parallelism:

- m* i i
« [Blocs] - (&7 s |
BN ORENCY :

= Threads & blocksin 3D

= Parallel function: kernel

= __global__ kernel(int a, float * b) { }

= Access own ID by global variables threadIdx.x,blockIdx.y,...
= Execution entity: threads

= Lightweight — fast switchting!

= 1000s threads execute simultaneously — order non-deterministic!

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 25141 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA SAXPY

With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float » y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a = x[i] + y[i];
}

int a = 42;

int n = 10;

float x[n], yInl;

// Fill x, y

cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n = sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, X, y);

cudaDeviceSynchronize();

g JULICH

Member of the Helmholtz Association 23 November 2022 Slide 26141 Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

CUDA SAXPY

With runtime-managed data transfer

__global 4 void saxpy_cuda(int n, float a, float * x, float * y) { Specify kernel
int i = blockIdx.x * blockDim.x + threadIdx.x; :
if (1<n)e——— ID variables

y[il = a = x[i] + y[i];

Guard against

} too many threads
int a = 42;
int n = 10;

float x[n], yInl; Allocate GPU-capable
// fill x, y / memory
cudaMallocManaged(&x, n = sizeof(float));

cudaMallocManaged(&y, n = sizeof(float)); Call kernel

/—‘ 2 blocks, each 5 threads
saxpy_cuda<<<2, 5>>>(n, a, X, y);

’

cudaDeviceSynchronize();0// SR il

9 JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 23 November 2022 Slide 27141

Programming GPUs
Performance Analysis

GPU Tools

The helpful helpers helping helpless (and others)

= NVIDIA
cuda-gdb GDB-like command line utility for debugging
compute-sanitizer Check memory accesses, race conditions, ...
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio
(Windows) or VScode
Nsight Systems GPU program profiler with timeline
Nsight Compute GPU kernel profiler

= AMD

rocProf Profiler for AMD’s ROCm stack
uProf Analyzer for AMD’s CPUs and GPUs

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 29141 J Forschungszentrum

Nsight Systems

CLI

$ nsys profile --stats=true ./poisson2d 10 # (shortened)

CUDA API Statistics:
Time(%) Total Time (ns) Num Calls Average Minimum Maximum

160,407,572 0 5,346,919.1 25,648,117

CUDA Kernel Statistics:

Time(%) Total Time (ns Average Maximum

158,686,617 15,868,661.7 14,525,819 25,652,783 main_106_gpu
25,120 2,512.0 2,304 3,680 main_106_gpu__red

oo .

JULICH | o<
SUPERCOMPUTING

Member of the Helmholtz Association 23 November 2022 Slide 30141 Forschungszentrum CENTRE

Nsight Systems

GUI

o0 e NNVIDIA Nsight Systems 2020.4.1
File View Tools Help

report2.qdrep

Timeline View

® S [@ 1error, 4 wamings, 16 messages
20s 21s

225 23s 24s £
» CPU (256)

» Threads (6)
~ CUDAHW (1
~ 15% Kemels

» 79.6% main_106_gpu
» 19.0% main_118_gpu

3 kernel groups hidder mmefe
~ 98.5% Memory

<01% Memset

51.1% HtoD memcpy

48.9% DtoH memcpy

wakl Jukl i, I Ll I

I J Ll i) okl i) sl oLk] J | L

I et bbb, e, b bbb e ot] b b, b kil N

0
Events View >
| Name M N

Name ~ start Duration = Context = ipti

7 Memset 17,9516 1,760 us GPUO Stream 14

8 main_106_gpu 17,9617s 472,923us GPUO Stream 14

9 main_106_gpu_red 17,9521s 3488 s GPUO Stream 14

10 Memcpy DtoH 17,9622s 2,080 ps GPUO Stream 14

n Memcpy DtoH 17,9622s 1,760 us GPUO Stream 14

Member of the Helmholtz Association 23 November 2022 Slide 31141

Nsight Compute

GUI

Details ~ | Launch: |- mc_polymer iteration_352_gpu| ~ || ¥ |~/ [dd saseline |~/ | Apply Rules Saveas image |-
rrent 1194.. Time: 2682 msecond Cycles: 28191.300 Regs: 144 GPU: A100-SXM4-40GB SM Frequency: 1.09 cycle/nsecond CC: 80 Process: [31938] SOMA (@] © @
100 126.. 7717 msecond Cycles: 101123609 Regs: 144 GPU: Tesla VI00-SXM2-16GB SM Frequency: 131 cycle/nsecond CC: 70 Process: [30412] SOMA

PU Speed Of Light 1. Al ~| O

level overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved percentage of utilization with respect to the
etical maximum. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.

M [%] 20.51 Duration [msecond] 25.82 (-66.54%)
Memory [%] 55.82 Elapsed Cycles [cycle] 28191300 (-72.12%)
L1/TEX Cache [%] 40.19 M Active Cycles [cycle] 27784365.64 (-72.30%)
L2 Cache [%] 61.89 (+149.01%) |SM Frequency [cycle/nsecond] 1.09 (-16.67%)
DRAM [%] 31.52 (-42.82%) |DRAM Frequency [cycle/nsecond] 1.21 (+38.21%)

GPU Utilization

M % F

00 100 200 200 400 500 600 70,0 800 200 100¢
Speed Of Light [%]
SOL SM Breakdown SOL Memory Breakdown
SOL SM: Issue Active [%] 2051 (+160.09%) | | SOLL2: Xbar2lts Cycles Active [%] 5582 (+124.58%)
SOL SM: Inst Executed (%] 2046 (+160.10%) | | SOLL2: T Tag Requests [%] 4527 (+178.82%)
SOL SM: Pipe Shared Cycles Active [%] 18.36 (+165.69%) | | SOLL1: M Litex2xbar Req Cycles Active [%] 3961(+107.93%)
SOL SM: Pipe Fp64 Cycles Active [%] 18.36 (+16569%) SOLL2: T Sectors [%] 3880 (+7123%)
SOL SM: Inst Executed Pipe Lsu %] 1080 (+127.96%) | | SOLL1: Data Pipe Lsu Wavefronts (%] 3410 (+76.03%)
SOL SM: Pipe Alu Cycles Active [%] 1037 (+161.23%)| | SOL GPU: Dram Throughput %] 3152 (-4282%)
SOL SM: Inst Executed Pipe Cbu Pred On Any [%] 813 (+71.98%)| SOLL1: Lsu Writeback Active [%] 2483 (+6367%)
SOL SM: Mio2rf Writeback Active [7 810 (+161.91%) | | SOLL2: D Sectors [%] 2264 (+116.71%)
SOL SM: Mio P Read Cycles Active [%] 810 (+105.96%) | | SOLL2: D Sectors Fill Device [%] 1219 (-12.20%)
SOL SM: Mio Pq Write Cycles Active [%] 753 (+166.64%) | SOL L1 Lsuin Requests [%] 1080 (+127.96%)
SOL SM: Pipe Fma Cycles Active [%] 7.22 (+165:80%) | | SOL L2: Lis2xbar Gycles Active (%] 882 (-21.48%)
SOL SM: Mio Inst Issued [%] 655 (+12369%) | | SOLL1: M Xbar2litex Read Sectors %] 639 (-2558%)
SOL SM: Inst Executed Pipe Xu [%] 459 (+16569%) | SOL L1: Data Bank Reads [%] 300 (+7711%)
SOL $M: Inst Executed Pipe Uniform [%] 120 |SOLL1: Data Bank Writes [%] 195 (+23.96%)
SOL SM: Inst Executed Pipe Adu [%] 118 (+16553%)| | SOL L1: Texin Sm2tex Req Cycles Active: [%] 000 (+258.69%)
SOL IDC: Request Cycles Active [%] 059 (+165.37%) | SOL L1: F Wavefronts [%] 000 (+258.69%)
SOL SM: Inst Executed Pipe Tex [%] 0 (+000%)| SOLL2: D SectorsFill Sysmem (%] 000 (+inf%)

SOL SM: Inst Executed Pipe Ipa [%] 0 (#000%)| SOLLI: Data Pipe Tex Wavefronts [%] 0 (+0.00%)

Programming GPUs

Advanced Topics

Advanced Topics

So much more interesting things to show!
= Optimize memory transfers to reduce overhead
= Optimize applications for GPU architecture
Drop-in BLAS acceleration with NVBLAS ($LD_PRELOAD)
Tensor Cores for Deep Learning
Libraries, Abstractions: Kokkos, Alpaka, Futhark, HIP, SYCL, C++AMP, C++ pSTL, ...

Use multiple GPUs
= Onone node P

= Across many nodes — MPI .@ .\—»f

Some of that: Addressed at dedicated training courses

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 34141 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://github.com/kokkos/kokkos/
https://github.com/ComputationalRadiationPhysics/alpaka
https://futhark-lang.org/
https://github.com/ROCm-Developer-Tools/HIP
https://www.khronos.org/sycl/
https://en.wikipedia.org/wiki/C%2B%2B_AMP
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/

Using GPUs on JSC Systems

Compiling

CUDA = Module: module load CUDA/11.5
= Compile: nvce file.cu
Default host compiler: g++; use nvcc_pgc++ for PGl compiler
m Example cuBLAS: g++ file.cpp -I$CUDA_HOME/include -L$CUDA_HOME/1lib64
-lcublas -lcudart

OpenACC = Module: module load NVHPC/22.3
= Compile: nvc++ -acc=gpu file.cpp

MPI CUDA-aware MPIs (with direct Device-Device transfers)

ParaStationMP| module load ParaStationMPI/5.5.0-1 mpi-settings/CUDA
OpenMPI module load OpenMPI/4.1.2 mpi-settings/CUDA

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 36141

Running

= Dedicated GPU partitions
JUWELS
--partition=gpus 46 nodes (Job limits: <1d)
--partition=develgpus 10 nodes (Job limits: <2 h, < 2 nodes)
JUWELS Booster

--partition=booster 926 nodes
--partition=develbooster 10 nodes (Job limits: <1d, < 2 nodes)
JURECADC

--partition=dc-gpu 192 nodes
--partition=dc-gpu-devel 12 nodes

= Needed: Resource configuration with --gres=gpu: 4
— See online documentation

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 37141 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://apps.fz-juelich.de/jsc/hps/juwels/gpu-computing.html

Running
JUWELS Booster Topology

= JUWELS Booster: NPS-4 (in total: 8 NUMA
Domains)

= Notall have GPU or HCA affinity! . '

% —0
ererne I
= Network is structured into two levels: _._r

In-Cell and Inter-Cell (DragonFly+
n?%m

network) \\/ m
9999779991117719911] 9999799991177799911] -\\\ /&
S~

— Documentation:
apps.fz-juelich.de/jsc/hps/juwels/

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 38141 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html

Example

m 16 tasks in total, running on 4 nodes

= Pernode: 4 GPUs
#!1/bin/bash -x
#SBATCH --nodes=4
#SBATCH --ntasks=16
#SBATCH --ntasks-per-node=4
#SBATCH --output=gpu-out.%j
#SBATCH --error=gpu-err.%j
#SBATCH --time=00:15:00

#SBATCH --partition=gpus
#SBATCH --gres=gpu:4

srun ./gpu-prog

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 23 November 2022 Slide 39141

Conclusion

Conclusion, Resources

= GPUs provide highly-parallel computing power
= We have many devices installed at JSC, ready to be used!

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 41141 J Forschungszentrum

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power

We have many devices installed at JSC, ready to be used!

Training courses by JSC next year

See online documentation and sc@fz-juelich.de

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 41141 J Forschungszentrum

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power

We have many devices installed at JSC, ready to be used!

Training courses by JSC next year

See online documentation and sc@fz-juelich.de

Further consultation via our lab: NVIDIA Application Lab in Jiilich; contact me!

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 41141 J Forschungszentrum

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de

Conclusion, Resources

GPUs provide highly-parallel computing power

We have many devices installed at JSC, ready to be used!

Training courses by JSC next year

See online documentation and sc@fz-juelich.de

Further consultation via our lab: NVIDIA Application Lab in Jiilich; contz

Thank you
attentlo
juelich- .de

for your
a.herten@fZ-

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 41141 J Forschungszentrum

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/GpuNodes.html?nn=1803700
mailto:sc@fz-juelich.de
mailto:a.herten@fz-juelich.de
mailto:a.herten@fz-juelich.de

Appendix

Appendix

Glossary
References
@) JULICH| &
SUPERCOMPUTING
Member of the Helmholtz Association 23 November 2022 Slide 218 Furschungszen"u,—n CENTRE

Glossary |

AMD Manufacturer of CPUs and GPUs. 52, 53, 54, 55, 56, 57, 88, 90
Ampere GPU architecture from NVIDIA (announced 2019). 4, 5,6

APl A programmatic interface to software by well-defined functions. Short for
application programming interface. 52, 53, 54, 55, 56, 57

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++.2,51,52,53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,68, 77, 90

HIP GPU programming model by AMD to target their own and NVIDIA GPUs with one
combined language. Short for Heterogeneous-compute Interface for Portability.
52,53, 54, 55, 56, 57

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 slide 318 J Forschungszentrum

Glossary I

JSC Jilich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jiilich, Germany. 2, 82, 83, 84, 85, 89

JURECA A multi-purpose supercomputer at JSC. 6
JUWELS Jiilich’s new supercomputer, the successor of JUQUEEN. 3,4, 5,78

MPI The Message Passing Interface, a API definition for multi-node computing. 75, 77

NVIDIA US technology company creating GPUs. 3,4, 5, 6, 26, 27, 28, 52, 53, 54, 55, 56, 57,
70, 82, 83, 84, 85, 88, 90

OpenACC Directive-based programming, primarily for many-core machines. 46, 47, 48, 49,
50, 77

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 slide 418 J Forschungszentrum

Glossary Il

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 52, 53, 54, 55, 56,
57

OpenMP Directive-based programming, primarily for multi-threaded machines. 46, 47,
48, 49, 50

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 52, 53, 54, 55, 56, 57

SAXPY Single-precision A x X + Y. Asimple code example of scaling a vector and adding
an offset. 34, 67, 68

Tesla The GPU product line for general purpose computing computing of NVIDIA. 3

@) JULICH
Member of the Helmholtz Association 23 November 2022 slide 518 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary IV

CPU Central Processing Unit. 3, 6,10, 11, 12,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 34,
52,53,54,55, 56,57, 88,90

GPU Graphics Processing Unit. 2, 3,4,5,6,7,10,11,12,13,14, 15,16, 17, 18, 19, 20,
21,22, 23,24,25,26,27,28,33, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54,
55, 56,57, 68,69, 70, 74,75, 76,78, 79, 80, 82, 83, 84, 85, 88, 89, 90

SIMD Single Instruction, Multiple Data. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

SIMT Single Instruction, Multiple Threads. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26, 27, 28
SM Streaming Multiprocessor. 19, 20, 21,22, 23, 24, 25, 26, 27, 28
SMT Simultaneous Multithreading. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 618 J Forschungszentrum

References |

[2] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pagesS8,9).

[6] Wes Breazell. Picture: Wizard. URrL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 37-41).

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 718 J Forschungszentrum

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics |

[1] Forschungszentrum Jiilich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

[3] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (pages 10, 11).

[4] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (pages 10, 11).

[5] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 23 November 2022 Slide 818 J Forschungszentrum

https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

