TY - GEN AU - Garcia de Gonzalo, Simon AU - Oden, Lena AU - Herten, Andreas AU - Hrywniak, Markus AU - Kraus, Jiri TI - Efficient Distributed GPU Programming for Exascale M1 - FZJ-2022-06173 PY - 2022 AB - Over the past years, GPUs became ubiquitous in HPC installations around the world. Today, they provide the majority of performance of some of the largest supercomputers (e.g. Summit, Sierra, JUWELS Booster). This trend continues in the pre-exascale and exascale systems (LUMI, Leonardo; Perlmutter, Frontier): GPUs are chosen as the core computing devices to enter this next era of HPC. To take advantage of future GPU-accelerated systems with tens of thousands of devices, application developers need to have the propers skills and tools to understand, manage, and optimize distributed GPU applications. In this tutorial, participants will learn techniques to efficiently program large-scale multi-GPU systems. While programming multiple GPUs with MPI is explained in detail, advanced tuning techniques and complementary programming models like NCCL and NVSHMEM are presented as well. Tools for analysis are shown and used to motivate and implement performance optimizations. The tutorial is a combination of lectures and hands-on exercises, using Europe's fastest supercomputer, JUWELS Booster with NVIDIA GPUs, for interactive learning and discovery. T2 - ISC High Performance 2022 CY - 29 May 2022 - 29 May 2022, Hamburg (Germany) Y2 - 29 May 2022 - 29 May 2022 M2 - Hamburg, Germany LB - PUB:(DE-HGF)17 DO - DOI:10.5281/ZENODO.6603470 UR - https://juser.fz-juelich.de/record/916372 ER -