000916375 001__ 916375
000916375 005__ 20230113085359.0
000916375 0247_ $$2doi$$a10.1007/s00425-022-03975-3
000916375 0247_ $$2ISSN$$a0032-0935
000916375 0247_ $$2ISSN$$a1432-2048
000916375 0247_ $$2Handle$$a2128/33303
000916375 0247_ $$2pmid$$a35988126
000916375 0247_ $$2WOS$$aWOS:000842406700001
000916375 037__ $$aFZJ-2022-06175
000916375 041__ $$aEnglish
000916375 082__ $$a580
000916375 1001_ $$00000-0002-7959-6323$$aSuresh, Kiran$$b0
000916375 245__ $$aComparing anatomy, chemical composition, and water permeability of suberized organs in five plant species: wax makes the difference
000916375 260__ $$aHeidelberg$$bSpringer$$c2022
000916375 3367_ $$2DRIVER$$aarticle
000916375 3367_ $$2DataCite$$aOutput Types/Journal article
000916375 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671710270_17299
000916375 3367_ $$2BibTeX$$aARTICLE
000916375 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916375 3367_ $$00$$2EndNote$$aJournal Article
000916375 520__ $$aAbstractMain conclusion The efficiency of suberized plant/environment interfaces as transpiration barriers is not established by the suberin polymer but by the wax molecules sorbed to the suberin polymer.Abstract Suberized cell walls formed as barriers at the plant/soil or plant/atmosphere interface in various plant organs (soil-grown roots, aerial roots, tubers, and bark) were enzymatically isolated from five different plant species (Clivia miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, and Malus domestica). Anatomy, chemical composition and efficiency as transpiration barriers (water loss in m s −1 ) of the different suberized cell wall samples were quantified.Results clearly indicated that there was no correlation between barrier properties of the suberized interfaces and the number of suberized cell layers, the amount of soluble wax and the amounts of suberin. Suberized interfaces of C. miniata roots, M. esculenta roots, and M. domestica bark periderms formed poor or hardly any transpiration barrier. Permeances varyingbetween 1.1 and 5.1 × 10 −8 ms −1 were very close to the permeance of water (7.4 × 10 −8 ms −1 ) evaporating from a water/ atmosphere interface. Suberized interfaces of aerial roots of M. deliciosa and tubers of S. tuberosum formed reasonable transpiration barriers with permeances varying between 7.4 × 10 −10 and 4.2 × 10 −9 m s −1 , which were similar to the upperrange of permeances measured with isolated cuticles (about 10 −9 ms −1 ). Upon wax extraction, permeances of M. deliciosa and S. tuberosum increased nearly tenfold, which proves the importance of wax establishing a transpiration barrier. Finally,highly opposite results obtained with M. esculenta and S. tuberosum periderms are discussed in relation to their agronomicalimportance for postharvest losses and tuber storage.Keywords Bark · Diffusion barrier · Periderm · Suberization · Storage root · Transpiration · Tuber · Water loss · Wax
000916375 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000916375 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916375 7001_ $$00000-0001-7050-9716$$aZeisler-Diehl, Viktoria V.$$b1
000916375 7001_ $$0P:(DE-Juel1)156560$$aWojciechowski, Tobias$$b2
000916375 7001_ $$00000-0001-7003-9929$$aSchreiber, Lukas$$b3$$eCorresponding author
000916375 773__ $$0PERI:(DE-600)1463030-8$$a10.1007/s00425-022-03975-3$$gVol. 256, no. 3, p. 60$$n3$$p60$$tPlanta$$v256$$x0032-0935$$y2022
000916375 8564_ $$uhttps://juser.fz-juelich.de/record/916375/files/s00425-022-03975-3.pdf$$yOpenAccess
000916375 909CO $$ooai:juser.fz-juelich.de:916375$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916375 9101_ $$0I:(DE-HGF)0$$60000-0002-7959-6323$$a University of Bonn$$b0
000916375 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156560$$aForschungszentrum Jülich$$b2$$kFZJ
000916375 9101_ $$0I:(DE-HGF)0$$60000-0001-7003-9929$$a University of Bonn$$b3
000916375 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000916375 9141_ $$y2022
000916375 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-16
000916375 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916375 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANTA : 2021$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-16$$wger
000916375 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916375 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-16$$wger
000916375 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000916375 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000916375 920__ $$lyes
000916375 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000916375 980__ $$ajournal
000916375 980__ $$aVDB
000916375 980__ $$aUNRESTRICTED
000916375 980__ $$aI:(DE-Juel1)IBG-2-20101118
000916375 9801_ $$aFullTexts