001     916375
005     20230113085359.0
024 7 _ |a 10.1007/s00425-022-03975-3
|2 doi
024 7 _ |a 0032-0935
|2 ISSN
024 7 _ |a 1432-2048
|2 ISSN
024 7 _ |a 2128/33303
|2 Handle
024 7 _ |a 35988126
|2 pmid
024 7 _ |a WOS:000842406700001
|2 WOS
037 _ _ |a FZJ-2022-06175
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Suresh, Kiran
|0 0000-0002-7959-6323
|b 0
245 _ _ |a Comparing anatomy, chemical composition, and water permeability of suberized organs in five plant species: wax makes the difference
260 _ _ |a Heidelberg
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671710270_17299
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a AbstractMain conclusion The efficiency of suberized plant/environment interfaces as transpiration barriers is not established by the suberin polymer but by the wax molecules sorbed to the suberin polymer.Abstract Suberized cell walls formed as barriers at the plant/soil or plant/atmosphere interface in various plant organs (soil-grown roots, aerial roots, tubers, and bark) were enzymatically isolated from five different plant species (Clivia miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, and Malus domestica). Anatomy, chemical composition and efficiency as transpiration barriers (water loss in m s −1 ) of the different suberized cell wall samples were quantified.Results clearly indicated that there was no correlation between barrier properties of the suberized interfaces and the number of suberized cell layers, the amount of soluble wax and the amounts of suberin. Suberized interfaces of C. miniata roots, M. esculenta roots, and M. domestica bark periderms formed poor or hardly any transpiration barrier. Permeances varyingbetween 1.1 and 5.1 × 10 −8 ms −1 were very close to the permeance of water (7.4 × 10 −8 ms −1 ) evaporating from a water/ atmosphere interface. Suberized interfaces of aerial roots of M. deliciosa and tubers of S. tuberosum formed reasonable transpiration barriers with permeances varying between 7.4 × 10 −10 and 4.2 × 10 −9 m s −1 , which were similar to the upperrange of permeances measured with isolated cuticles (about 10 −9 ms −1 ). Upon wax extraction, permeances of M. deliciosa and S. tuberosum increased nearly tenfold, which proves the importance of wax establishing a transpiration barrier. Finally,highly opposite results obtained with M. esculenta and S. tuberosum periderms are discussed in relation to their agronomicalimportance for postharvest losses and tuber storage.Keywords Bark · Diffusion barrier · Periderm · Suberization · Storage root · Transpiration · Tuber · Water loss · Wax
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zeisler-Diehl, Viktoria V.
|0 0000-0001-7050-9716
|b 1
700 1 _ |a Wojciechowski, Tobias
|0 P:(DE-Juel1)156560
|b 2
700 1 _ |a Schreiber, Lukas
|0 0000-0001-7003-9929
|b 3
|e Corresponding author
773 _ _ |a 10.1007/s00425-022-03975-3
|g Vol. 256, no. 3, p. 60
|0 PERI:(DE-600)1463030-8
|n 3
|p 60
|t Planta
|v 256
|y 2022
|x 0032-0935
856 4 _ |u https://juser.fz-juelich.de/record/916375/files/s00425-022-03975-3.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916375
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a University of Bonn
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-7959-6323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156560
910 1 _ |a University of Bonn
|0 I:(DE-HGF)0
|b 3
|6 0000-0001-7003-9929
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANTA : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-16
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21