001     916401
005     20231027114350.0
024 7 _ |a 10.1021/acschembio.2c00735
|2 doi
024 7 _ |a 10.34734/FZJ-2022-06201
|2 datacite_doi
024 7 _ |a 36647580
|2 pmid
024 7 _ |a WOS:000921927600001
|2 WOS
037 _ _ |a FZJ-2022-06201
082 _ _ |a 540
100 1 _ |a Eberle, Raphael J.
|0 P:(DE-Juel1)179561
|b 0
245 _ _ |a Discovery of All- d -Peptide Inhibitors of SARS-CoV-2 3C-like Protease
260 _ _ |a Washington, DC
|c 2023
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692862737_929
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a During the replication process of SARS-CoV-2, the main protease of the virus [3-chymotrypsin-like protease (3CLpro)] plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next-generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or noncompetitive mode, in the low μM range. From the most efficient l-peptides obtained from the phage display, we designed all-d-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low μM range and in combination, even in the sub-micromolar range. Additionally, the combination with Rutinprivir decreases 10-fold the IC50 value of the competitive inhibitor. The inhibition modes of these d-ri peptides were the same as their respective l-peptide versions. Our results demonstrate that retro-inverso obtained all-d-peptides interact with high affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential for further development toward therapeutic agents. The here described d-ri peptides address limitations associated with current l-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent d-peptides to be used for the prevention and treatment of COVID-19.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a DFG project 267205415 - SFB 1208: Identität und Dynamik von Membransystemen - von Molekülen bis zu zellulären Funktionen (267205415)
|0 G:(GEPRIS)267205415
|c 267205415
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sevenich, Marc
|0 P:(DE-Juel1)165152
|b 1
|u fzj
700 1 _ |a Gering, Ian
|0 P:(DE-Juel1)171922
|b 2
|u fzj
700 1 _ |a Scharbert, Lara
|0 P:(DE-Juel1)185030
|b 3
|u fzj
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 4
700 1 _ |a Lakomek, Nils A.
|0 P:(DE-Juel1)180657
|b 5
|u fzj
700 1 _ |a Santur, Karoline
|0 P:(DE-Juel1)169248
|b 6
700 1 _ |a Mohrlüder, Jeannine
|0 P:(DE-Juel1)132012
|b 7
700 1 _ |a Coronado, Mônika A.
|0 P:(DE-Juel1)180738
|b 8
|e Corresponding author
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acschembio.2c00735
|g Vol. 18, no. 2, p. 315 - 330
|0 PERI:(DE-600)2221735-6
|n 2
|p 315 - 330
|t ACS chemical biology
|v 18
|y 2023
|x 1554-8929
856 4 _ |u https://juser.fz-juelich.de/record/916401/files/Invoice_APC600375566.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916401/files/acschembio.2c00735.pdf
909 C O |o oai:juser.fz-juelich.de:916401
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179561
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185030
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180657
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180738
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21