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Abstract
This chapter sheds light on the synaptic organization of the brain from the perspec-
tive of computational neuroscience. It provides an introductory overview on how to
account for empirical data in mathematical models, implement them in software, and
perform simulations reflecting experiments. This path is demonstrated with respect
to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic
transmission, synaptic plasticity, and the heterogeneity across synapses. Each step
and aspect of the modeling and simulation workflow comes with its own challenges
and pitfalls, which are highlighted and addressed in detail.
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1 Introduction
Creating mathematical models from experimental neurophysiological data has grown
into an established and essential method for investigating the brain. Based on these
mathematical models and exploiting the upswing of affordable and powerful com-
puting architectures over the last few decades, a new sub-field concerned with the
computational modeling of neurobiological systems has emerged. The discipline us-
ing mathematical modeling and analysis methods to understand principles of brain
organization, dynamics, and function is called computational neuroscience. This dis-
cipline is also sometimes referred to as theoretical or mathematical neuroscience, each
term having its own slightly different emphasis. One of the most challenging subjects
of this comparatively young domain is the synaptic organization of the brain. This
chapter reviews the status quo of synaptic modeling approaches. It is targeted pri-
marily at experimentalists and aims to provide insight into ways data can be used to
build mathematical or computational models.

The methods described in the previous chapters of this volume reveal diverse
dynamical processes and heterogeneous components involved in synaptic signaling
at various spatial and temporal scales. This variability is amplified by the size and
complexity of neurobiological systems: both the density and the total number of
synapses in mammalian brains are impressive, the former being on the order of 109

per cubic millimeter in the cerebral cortex (Alonso-Nanclares et al., 2008) and the
latter being estimated as roughly 5× 1014 in the human brain (Linden, 2018). Each
cubic millimeter of the human brain contains on the order of 104−105 neurons adding
up to about 1011 neurons in the brain as a whole (Azevedo et al., 2009).

Figure 1: Cycle of modeling and simulation. The empirical data from the brain
structure under study (the “system of interest”) is first mathematically modeled and
then implemented in software. Closing the loop, simulation results can be compared
to experimental recordings. Reproduced with permission from Fig. 1 in Trensch et al.
(2018).

How can we model such a heterogeneous, complex, and dense large-scale system?
The process of modeling and simulation can be understood as a cycle, as depicted
in Fig. 1. First, the experimental results recorded from the system of interest (here,
the synaptic organization of the brain) are analyzed, and a mathematical model is
formulated. Then, the mathematical model is translated into computer language,
i.e., into an executable model that implements the mathematical operations needed
to simulate the model. Finally, the model of the system is executed, whereby this
simulation is the numerical analog to an experiment. This process yields results
that can be compared with the experimental results. In turn, this comparison may
deliver outcomes that can be used to improve the mathematical and computational
models. Comparisons between the system of interest, the mathematical model, and
the executable model ensure quality control. In general, three types of checks for
correctness can be distinguished (Trensch et al., 2018): Confirmation ensures that
the mathematical formulation applies to the system of interest, verification that the
executable model sufficiently represents the mathematical model, and validation that
the simulation outcome is consistent with and predictive of the system of interest. This
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chapter focuses on the inner triangle of arrows: the practical methods to formulate
mathematical models in an informed way, to translate them into manageable and
correct executable models, to run simulations, and to inform further modeling choices
using the obtained data.

The challenge of computational neuroscience is to analyze the rich dynamics of
neuronal systems and abstract their complexity into mathematical models that still
capture essential characteristics of the experimental findings. At the same time, these
models should be simple enough to be tractable and generalizable and thus reveal
possible laws that govern the dynamical system. A fundamental question in this
endeavor is what variables are of interest and best describe the data. In synaptic
organization, candidates include the connection strengths, synaptic time constants,
delays, vesicle release characteristics, synaptic plasticity, and neuromodulation.

Developing this thought further, a modeler needs to decide on the scale the model
represents and how to parameterize it. It is advisable to constrain the number of
model parameters to a minimal set that answers a specific research question. Lim-
iting the parameter space increases the tractability, mechanistic interpretability, and
robustness of the model and reduces the risk of overfitting. However, capturing bio-
logical detail and enhancing the direct link between parameters and their biological
counterparts can usually only be done with a large set of parameters. Heterogeneity
can be represented by introducing parameter value distributions, leading to additional
parameters characterizing the dispersion and possibly higher-order properties of the
corresponding distributions. Overall, a suitable parameterization involves a tradeoff
between the model’s controllability and biological plausibility.

These decisions on which aspects of the system to express as variables and the
choice of the corresponding model equations are abstraction steps: they formalize a
hypothesis on which features are germane to the question at hand and which math-
ematical descriptions are appropriate for capturing the phenomena of interest (see
Section 7.8). In general, this abstraction can be approached from two different di-
rections. The bottom-up approach starts from the low-level properties of the neurons
and synapses making up the system and models the complexity step by step in the
hope of achieving realistic dynamical and functional properties. However, one ma-
jor point of modeling is to improve our understanding of a system. Given that the
starting point is a poor understanding, this approach suffers from the fundamental
problem that essential features might be abstracted away or obfuscated by an abun-
dance of less relevant details. Another point can be to provide accurate predictions,
even if we do not understand the model. The opposite approach, top-down modeling,
starts from the high-level dynamical, functional, or behavioral properties one would
like to capture and then proposes concrete implementations. The drawback of this
approach is that a model created in this way might not fully conform to biology, so
it is difficult to draw conclusions about the brain. One solution is to use different
degrees of abstraction at different scales to arrive at an understanding of the system,
which is the motivation behind multi-scale modeling. Ideally, biological realism is
incrementally enhanced through cycles of data comparison and refinement (see Fig. 1
and Section 7.1).

Some neurophysiological observations can be modeled with analytically solvable
equations, i.e., in an exact way and usually with pen and paper. However, various
simplifying assumptions usually flow into such abstractions, and deriving an analytical
solution to a model’s equations becomes less feasible as its complexity increases. For
such cases, numerical solutions can provide a useful alternative. This computational
approach tends to be slower, but it can validate the analytical approach by requiring
fewer simplifying assumptions and it may even provide novel theoretical insight.

Simple small network models frequently consist of equations that can be solved an-
alytically or calculated numerically with few computational resources. However, both
numerical and analytical approaches reach certain limits when attempting to replicate
realistic neuron numbers in the volume of the brain region under consideration. As
the number of neurons increases, the number of connections grows quadratically in
networks without spatial dependence and linearly for distant neurons in models incor-
porating spatial dependence since most connections are local. To approximate natu-
ral density, analytical techniques like mean-field theory sacrifice biological specificity.
With sufficient computing power, numerical methods may solve model equations at
natural density. A limitation is that, to date, this is only possible for small brains or
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small portions of larger brains.
We restrict the scope of this chapter to phenomenological models, which repre-

sent the empirical relationship between phenomena without explaining the reason
for the interaction. We neglect the molecular level or ultrastructure, i.e., structures
visible at magnifications higher than that provided by standard optical light mi-
croscopy. Furthermore, we address spiking neuron models, mainly so-called point
or few-compartment neurons, which neglect the precise morphology of the neuron,
as the effective dynamics of a morphologically complex neuron can often already be
meaningfully captured by such models.

The models are usually translated to be executable by a computer, i.e., imple-
mented in one of the various computer languages. One or an interconnected set of
dynamical model components representing neurobiological entities such as neurons
or synapses is simulated, i.e., evolved in time, for a specific duration with a set of
parameters, initial conditions, and stimuli.

The generic framework that can numerically solve the dynamical equations of var-
ious models is called a simulator. It solves complex interactions with many coupled
differential equations typically incrementally in discrete time steps. Spiking neuronal
network simulators also communicate spike events from senders to receivers. The
event-based nature of synaptic interactions in the form of action potentials is ad-
vantageous for the efficiency of the simulation. Furthermore, a simulator can record
dynamical state variables in the network or other observables like connectivity and
apply stimuli during simulation.

Since the simulator needs to organize and maintain the appropriate data structures
in computer memory, a substantial amount of RAM may also be required, depending
on the simulated neurobiological system. Biologically realistic network models are
often large-scale to reflect or approach the natural density of neurons and synapses,
have additional computational overhead due to heterogeneity, and are typically sim-
ulated for a long time, e.g., to gather statistics or study behavioral timescales. Thus,
a simulator should be efficient and scale to high-performance architectures regarding
processing and memory capacity.

In addition to these performance aspects, criteria for a good simulator include
functional completeness, numerical accuracy, and reproducibility of results. Further-
more, a simulator increases its value for the community if the available models are
relevant to many members and the documentation is comprehensive and easy to un-
derstand. Developing a simulator that fulfills all these criteria and supports diverse
models is complex and time-intensive. Consequently, simulators with peer-reviewed
collections of implemented models are continuously developed as a community effort
and shared as software packages to benefit the field of computational neuroscience.

From the range of existing simulators for biologically inspired neuronal networks,
this chapter focuses on NEST (Gewaltig and Diesmann, 2007), an open-source soft-
ware tool designed to simulate anywhere from small to large-scale networks of di-
verse spiking neuron models, and its associated domain-specific modeling language
NESTML (Plotnikov et al., 2016) that facilitates the creation of new neuron and
synapse models. Other simulators with various scientific foci and special areas of
application include NEURON (Hines and Carnevale, 2001), Brian (Stimberg et al.,
2019), Nengo (Bekolay et al., 2014), Arbor (Abi Akar et al., 2019), and ANNarchy
(Vitay et al., 2015). Some common (simulator-agnostic) interfaces are provided by
PyNN (Davison et al., 2009) and the modeling language NeuroML (Gleeson et al.,
2010).

This chapter is structured as follows. Each section from Section 2 to Section 6
presents a two-step recipe to go from experimental data on a specific feature or mech-
anism of the synaptic organization to simulations: first, how to mathematically model
experimental data, and second, how to simulate this model. Section 2 starts with the
most simplified view of brain circuitry, namely binary connections between neurons.
This view is advanced in Section 3 to the notion of weighted connections. Then,
dynamics is introduced to the existence of connections in Section 4 and the weights
of those connections in Section 5. Finally, Section 6 discusses how to model the ad-
ditional heterogeneity in all these features. Throughout the text, links to Section 7
highlight aspects that are particularly challenging or contain pitfalls. The chapter
ends with some concluding remarks in Section 8.
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2 Connectivity

2.1 From empirical data to mathematical models
Anatomical and physiological experiments are yielding ever richer data sets on brain
connectivity. Integration of these data into dynamical models can help gain insight
into their implications for brain activity and function, besides identifying gaps in the
data which can inform future experiments. The data cover diverse scales, ranging
from electron microscopy at the sub-micron scale of synapses to light microscopy
for neuronal morphology, paired recordings identifying fractions of connected neuron
pairs, glutamate uncaging at the scale of tens to hundreds of microns, axonal trac-
ing for long-range connectivity, and diffusion imaging for the whole-brain scale (van
Albada et al., 2021).

Despite the richness of the available data, none of these experimental approaches
can specify full connectomes at the single-neuron resolution, especially in organisms
with complex brain structures such as mammals. Therefore, we need to make pre-
dictions in order to complete the detailed connectivity data. One strategy is to find
statistical regularities in the existing data and use these to extrapolate to missing
data points. Of course, models do not need to be fully data-driven; various abstrac-
tions may be used to explore the influence of specific aspects of the connectivity. We
illustrate the data-driven approach using the example of the cerebral cortex. In view
of the incompleteness of the known cortical connectivity for any individual, we de-
scribe the connectivity in a probabilistic manner. A different strategy for generating
the connectivity may be to grow connections according to developmental or other
plasticity rules (for structural synaptic plasticity, see Section 4).

The cerebral cortex contains different types of excitatory and inhibitory neurons,
distinguished by their morphology, electrophysiology, connectivity, and molecular
make-up (Gouwens et al., 2019; Hodge et al., 2019). We refer to the set of neu-
rons of the same type in a given cortical area and layer as a population. Connection
probabilities are specific to both source and target populations. Furthermore, con-
nection probability decays with the distance between neurons, both locally within
areas and at longer ranges between areas (Packer and Yuste, 2011; Perin et al., 2011;
Ercsey-Ravasz et al., 2013). Also, both within and between areas, connectivity is spe-
cific to cortical layers, and excitatory connectivity tends to be organized into patches
(Felleman and Van Essen, 1991; Voges et al., 2010).

When formalizing these properties into models, a number of subtleties are involved
(Senk et al., 2022). First, the term connection probability needs to be defined care-
fully. This could, for instance, refer to either the total number of synapses divided
by the product of the source and target population sizes or the probability for any
neuron pair to be connected via at least one synapse. The two definitions diverge in
the case of multapses, multiple synapses between a given source and target neuron
pair, often observed in reconstruction data (Kasthuri et al., 2015). Further, models
can either allow self-connections, also called autapses, or prohibit them. Moreover,
beyond a certain model size, the spatial decay of the connection probability becomes
important. To capture this, simulated neurons are assigned spatial coordinates, and
additional specifications are necessary, including boundary conditions and the choice
of connectivity profile. Common choices for the local profile are Gaussian and expo-
nential functions, where the latter generally appears to be a better approximation to
experimental data (Packer and Yuste, 2011; Perin et al., 2011).

Figure 2A–F illustrates the local decay of connectivity with distance. Choosing a
symmetric exponential as a model, Figure 2G shows that fitting to the experimental
data can reveal fundamental constants such as the characteristic length λ.

When including patchy connectivity, the spatial position of the patches can be
specified via a radial distance from a cell body and an angle (Voges et al., 2010). Fur-
ther possible parameters are the number of patches, the size of each patch, and the
degree of overlap between patches. Layer-specific axonal tracing data, such as frac-
tions of supragranular labeled neurons from retrograde tracing experiments (Markov
et al., 2013), can inform the laminar inter-area patterns of cortical models. Here one
should pay attention to the fact that, on the target side, axonal tracing tells us about
axonal or synaptic locations but not about the locations of the target cell bodies.
To a reasonable approximation, one can statistically map synapses to target neurons
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Figure 2: Fitting a model of connectivity to observed data. A–F Layer-
resolved axonal tracing data from V1 of New World monkeys (adapted from Sincich
and Blasdel, 2001, Figure 3, Copyright 2001 Society for Neuroscience). Images show
staining of cortical layers after an injection of biocytin into layer 3, anterogradely
staining axons. G Fit of a 2D symmetric exponential function f(r) = ae−λ/r + b
(red) to the axonal density distribution (blue) of layer 5. The model does not fully
capture the connectivity profile for layers 2, 3, and 4B (A, B, C), which display patchy
connectivity.

using morphological reconstructions (Rees et al., 2017; Schmidt et al., 2018).
This is only a tiny selection of data and features that can be included in neuronal

network models. One can go into greater complexity and, for example, consider the
higher-level organization of networks, such as hierarchical modularity or small-world
properties. For a further discussion on model detail in general, see Section 8.

2.2 From mathematical models to simulation
To simulate how the dynamics of a neuronal network model evolve, the mathematical
model description needs to be translated into an executable one. This is preferably
done using a dedicated simulator to avoid mistakes in the implementation and to
enhance comparability and reproducibility of results (for the precise definition of the
different forms of reproducibility, see Section 7.2.) Executing a neuronal network sim-
ulation typically involves two successive phases: during the build phase, the network
is set up on the machine by instantiating objects and data structures for neurons and
synapses. The subsequent simulation phase propagates the network state for a speci-
fied biological model time. How fast a simulation runs, i.e., how the biological model
time relates to the wall clock time, crucially depends on the representation of the net-
work model on the machine. Parallel computing combines the computational power of
many separate compute cores or nodes to enable large-scale simulations; to this end,
NEST uses a hybrid approach with the Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP). The former enables parallel computing on multiple pro-
cessors with distributed memory, while the latter enables parallel computing even on
single processors with shared memory, referred to as threading. The total number of
so-called virtual processes is determined as the product of the number of MPI pro-
cesses and the number of OpenMP threads per process. A direct mapping between
network structure and hardware is in general difficult to realize. Therefore, NEST
uniformly distributes the neurons of each population across the available processors
to balance the compute load (Section 7.3). The neurons are connected via synapses,
which are assigned specific weights and delays reflecting conduction times. Synapse
models are stored and updated on the same compute nodes that hold their postsy-
naptic partner neurons. Maintaining the complete network connectivity in computer
memory enables the use of plasticity mechanisms that can modify synaptic strengths
at runtime (for functional synaptic plasticity, see Section 5). The alternative procedu-
ral connectivity approach generates the required routing information on the fly and
thereby requires fewer memory resources (Roth et al., 1997; Knight and Nowotny,
2021).

Establishing synapses in a computational network model requires defining which

6



neurons are connected. For specific data-driven models, the network structure can
be loaded from a file, but simulators also provide built-in routines for generating
connectivity. These routines (see Program 1) range from a primitive that just con-
nects individual source and target neurons, to high-level connection rules acting on
the neuron population level (Senk et al., 2022). For example, the deterministic rule
all-to-all connects each neuron of a source population to each neuron of a target
population. Probabilistic rules account for the often statistically described sparse
connectivity in biological neuronal networks. Random, fixed in-degree connectivity,
for instance, specifies only the number of incoming connections per neuron but not
which individual ones are selected as sources. If the connectivity is described as
pairwise Bernoulli, each pair of neurons is connected with a given probability. The
fixed in-degree rule needs to be combined with the specification of whether multapses
are allowed, whereas the pairwise Bernoulli rule excludes them by definition as each
pair of neurons is considered only once. High-level connection rules enable efficient
low-level implementations such as parallelization of the network construction.

Pseudo-random number generators (pRNGs) are used for drawing connections
according to a probabilistic rule and optionally also for setting synaptic parameters
(see Section 6). The resulting network realization will be identical if the same numbers
are sampled (by fixing the pRNG seed). Random distributions sometimes have to be
constrained in order to preserve the sign of a weight according to Dale’s principle
(Strata and Harvey, 1999) or enforce delays to be larger than the simulation time
step, for which a typical value is 0.1 ms. A longer minimum delay, for instance, 1 ms,
can furthermore be used to limit the necessary frequency of communication between
virtual processes.

Large-scale neuronal network models require high-performance computing. Em-
ploying several compute nodes in parallel not only distributes the workload but also
gives access to sufficient memory for storing the network connectivity. There are
on the order of 104 synapses per neuron in the cortex, and storing a single synap-
tic weight costs 8 bytes in NEST (Kunkel et al., 2014). This leads to a substantial
amount of resources required for large models. Networks with reduced neuron and
synapse numbers can preserve some characteristics (e.g., firing rates) of full-scale net-
works if the downscaling is compensated for with informed parameter adjustments
(van Albada et al., 2015). The pairwise correlation structure of the neuronal activity,
however, cannot be preserved simultaneously, rendering neuroscientific simulations at
natural density a necessity where correlation structure is relevant. This may be the
case, for instance, to ensure the correct network state: correlation changes may even
shift a network between linearly stable and unstable regimes. Disentangling network
size from memory usage per MPI process (Jordan et al., 2018) provides a potential
solution, paving the way toward brain-size networks with realistic connectivity.

3 Synaptic transmission

3.1 From empirical data to mathematical models
Electrochemical signaling between neurons is mediated by various receptor types, ex-
pressed post- and presynaptically. Different receptor types trigger different physiolog-
ical responses. Ligand- or voltage-gated ion channels influence ionic flows through the
membrane, with distinctive kinetics for each receptor type (examples include AMPA
and NMDA). Metabotropic receptors trigger intracellular biochemical signaling cas-
cades with downstream actions that are typically not instantaneously noticeable but
mediate physiological adaptation processes. Electrical synapses (gap junctions) are
transmembrane channels that form a direct electrical and biochemical coupling be-
tween the cytosol of two adjacent cells. Compared to chemical synapses, they provide
increased speed as the signal does not need to be converted from electrical to chemical
and back across a synaptic cleft. The composition of receptor types on a neuron’s
synapses, their spatial distribution on the dendritic tree and cell body, and their in-
dividual, instantaneous efficacy and response kinetics determine how and at which
timescales the neuron filters and integrates its many presynaptic inputs. We will
focus here on chemical synapses.

The amplitude of the postsynaptic response is proportional to the strength or
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weight of the synapse. Synaptic weights can be estimated from paired recordings,
usually in vitro, to avoid background activity that confounds the measurements.
However, here it should be taken into account that the synaptic weight obtained
from paired-cell recordings is determined by a combination of biophysical properties,
e.g., postsynaptic receptor density, amount of released neurotransmitters, reuptake
kinetics, or existence of more than one connection between a pair of cells (multapses).
Hence, the terms strength and weight refer to an effective, phenomenological quantity.
Mapping the corresponding parameters to the in vivo condition is nontrivial because
experimental conditions like temperature and extracellular fluid may differ, as well as
a high-conductance network state affecting the measured quantities such as time con-
stants (Destexhe et al., 2003; Maksimov et al., 2018). Change of synaptic strengths
over time is discussed in Section 5.

When a presynaptic neuron has emitted an action potential, the signal that ar-
rives at the postsynaptic neuron can be observed as a postsynaptic potential (PSP):
the deflection in the somatic membrane voltage caused by the incoming spike. Alter-
natively, synaptic currents (PSCs) may be measured at different holding potentials
using voltage clamp recordings. From a PSC or PSP, the weight of the synapse can be
derived. Synapses are often modeled as injecting a current into the postsynaptic cell
or acting as a conductance, the current of which is proportional to the difference be-
tween the membrane potential and a synapse- or receptor-specific reversal potential.
In the simplest approximation of the postsynaptic response kinetics, the time course
of this current or conductance may be modeled as a Dirac delta function causing a
step increase in the membrane potential or current, respectively. With increasing
levels of complexity, the time course of the PSC (or postsynaptic conductance, PSG)
can be approximated by an instantaneous rise followed by an exponential decay or
by a double exponential with separate time constants for the rising and the decaying
phase (Gerstner et al., 2014).

Beside spatially precise communication via synapses, the spatially more diffuse
process of neuromodulation can alter the excitability of neurons and affect synaptic
plasticity (see Section 5). Neuromodulation is achieved by the release of a neuro-
transmitter with less detail in the connectivity patterns than in typical synaptic (for
instance, glutamatergic) neurotransmission. The neuromodulator, such as dopamine
or serotonin, is typically released from a neuron whose cell body lies in a small, circum-
scribed nucleus in the brain but which projects broadly and affects many downstream
targets simultaneously. The precise spatiotemporal profile of neurotransmitter con-
centration is often approximated in models by assuming the neuromodulator diffuses
through extracellular space, referred to as volume transmission. Simulating the diffu-
sion process entails solving the Laplace equation—an equation that involves the spa-
tial gradient and divergence operators, requiring a different type of solver than those
that solve the neuronal network system dynamics. Instead of a detailed representa-
tion of the geometry of extracellular space (for instance, based on the finite-element
method), the medium may be assumed to be spatially homogeneous, and diffusion
can even be assumed to occur instantaneously, considerably simplifying the model
and its computational requirements (Potjans et al., 2010).

Neurons have a spatial extent, and their dendrites often exhibit intricate branch-
ing patterns. Consequently, the spatial collocation of synapses on the dendrites has
important consequences for the neuron’s response to input. Dendritic responses are
often nonlinear, as dendrites are studded with a high density of voltage-gated chan-
nels, which, combined with intracellular responses like calcium signaling, can cause
a nonlinear interaction between nearby synaptic inputs. In addition, the dendrite
itself can exhibit action potentials distinct from a somatic action potential, for in-
stance, involving a local, intracellular calcium transient (see, e.g., Larkum et al.,
2022). The (local) change in membrane potential and conductance, in turn, affects
the integration at adjacent synapses in the branch. The triggering of dendritic action
potentials by co-activated and co-located synapses and their effects on the somatic
dynamics can be accounted for in simple point neuron models by including nonlin-
earities in synaptic input currents (Jahnke et al., 2012; Bouhadjar et al., 2022). For
a more fine-grained analysis, multicompartment models are commonly used. In these
models, each neuron consists of dozens or hundreds of compartments, each equipped
with a distinct type of dynamics and parameterization and coupled to neighboring
compartments according to Ohm’s law (Gerstner et al., 2014). Multicompartment
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models permit integrating experimental data at a highly detailed level of description
but are computationally and conceptually much more complex and demanding. On
the other hand, some biophysical details like synaptic adaptation can be adequately
modeled without the need to address the microscopic biophysics of synaptic vesicles
but can be treated phenomenologically by adding one or a few extra continuous state
variables to the model (e.g., Tsodyks et al., 1998; Brette and Gerstner, 2005).

3.2 From mathematical models to simulation
NEST integrates equations for neurons with linear subthreshold dynamics exactly
(Rotter and Diesmann, 1999) and uses standard numerical solvers for nonlinear neu-
ron models. For synapses, an efficient approach is to specify the characteristic time
evolution of some postsynaptic quantity, such as current or conductance, as a lin-
ear system of equations. If responses sum linearly across a neuron’s synapses, they
can be lumped together into a single or a few state variables and do not have to be
stored and updated for each synapse separately. For this reason, the postsynaptic
response is typically specified as part of the (postsynaptic) neuron model. As de-
scribed in Section 3.1, the postsynaptic kernel could be, for example, a Dirac delta
function (causing an instantaneous jump in the postsynaptic membrane potential), an
instantaneous rise followed by an exponential decay, or a double-exponential function
with a finite rise time. Furthermore, because they are linear, solving these equations
does not require a numerical solver but only multiplication with a constant at each
time step (Morrison et al., 2007b). The reduction to a simple multiplication gener-
ally makes the solution much more precise: the computed values are closer to the
mathematically “true” solution and more efficient to compute. Thus, simulations of
networks with many synapses become feasible. Multiple types of synapses can be
easily incorporated into this scheme by grouping them according to their kinetics, for
instance, into a separate AMPA and NMDA group (see Program 2).

In simulations of large networks, the layout of data structures in memory and
communication can become bottlenecks. Conceptual modeling decisions can interact
with data layouts; for example, the synaptic delay can be chosen as a property of
the synapses or the pre- or postsynaptic neurons. In the point-neuron framework,
the delay is assigned to either a neuron’s axonal or dendritic side, implying differ-
ent biophysical interpretations and simulation outcomes. The biophysical object of a
synapse is not necessarily represented in code by a specific software object but dis-
tributed into a presynaptic and a postsynaptic component. In the instantiation of a
particular model, these components may not even live on the same compute node. As
noted in Section 2.2, NEST stores synapses on the process containing the postsynaptic
neuron.

In simulations using parallel computing, spike events and potentially other quan-
tities such as synaptic weights have to be communicated between threads, processes,
or across a computer network (Section 7.4). Parallel computing presents a set of
unique design requirements because the evolution of the dynamical model needs to
occur synchronously, lest the model’s state becomes internally inconsistent when some
parts of it have become desynchronized in time. This requirement can be addressed
by instituting a minimum, nonzero transmission delay for each synaptic connection
in the model. A delay between the presynaptic spike and the resulting postsynap-
tic response effectively decouples neurons for this time window so that events can
be transmitted across the computer network in a regular cadence at the end of each
window (Section 7.5). This decoupling allows simulations to scale to many compute
nodes (Morrison and Diesmann, 2007).

From a mathematical modeling point of view, gap junctions are much simpler than
chemical synapses; their delay is negligible, and they do not filter the input. How-
ever, modeling gap junctions numerically can be challenging because they entail an
instantaneous coupling between compartments. The waveform relaxation technique
helps retain simulation efficiency when combining gap junctions with a numerical sim-
ulation method that takes advantage of a minimum, nonzero synaptic delay. Each
neuron is considered a separate subsystem in this technique, and the gap junction
coupling terms (current flowing from one neuron into the other) are solved iteratively.
This solution requires exchanging data (in particular, membrane potentials) between
the gap-junction coupled neurons only at the end of each minimum delay step, thus
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limiting the necessary communication frequency. In exchange, it requires only a mod-
est increase in computation and the size of the communicated packets since solving
the forward dynamics of each separately considered neuron needs to be repeated only
once per iteration of the waveform relaxation algorithm (Hahne et al., 2015; Jordan
et al., 2020).

4 Structural Plasticity
The models introduced earlier in this chapter had static connectivity (see Section 2).
However, macroscopic observations of the brain have revealed that the connections in
cortical networks continually change as new synapses form and others dwindle and
disappear (for a review, see Stettler et al., 2006). This rewiring is a lifelong process to
encode experiences but happens extensively during development and recovery from
lesions in the brain tissue (for a review, see Butz et al., 2009). The underlying
mechanisms introducing dynamics into the connectivity are summarized as structural
synaptic plasticity.

4.1 From empirical data to mathematical models
Including structural plasticity mechanisms into a synapse model can increase its bi-
ological plausibility, e.g., regarding learning, development, reformation after lesions
(Butz and van Ooyen, 2013) or topographic map formation (Bamford et al., 2010).
Structural plasticity might also be the basis for associative connections (Gallinaro and
Rotter, 2018) and metaplasticity (Kalantzis and Shouval, 2009). However, plasticity
mechanisms capable of generating network connectivity in a principled fashion can
also be helpful in other ways. First, they can help reduce dependence on cumbersome
and expensive connectivity recordings in animals (see Section 2). Second, they can
serve a range of functional purposes. For example, they can enhance learning perfor-
mance (Bellec et al., 2017), maintain the spiking activity of neuronal populations at
an energetically or computationally favorable set-point (Turrigiano, 2012), or increase
the storage efficiency of long-term memories and, by that, prevent catastrophic for-
getting (Knoblauch, 2017). Third, efficient pruning of the connectivity and preserving
sparse connectivity (Kappel et al., 2015) can help save energy and optimize the us-
age of limited synaptic resources, which is particularly important in neuromorphic
computing (Bellec et al., 2017; Billaudelle et al., 2021; George et al., 2017).

To understand the process of developing a comprehensive and accurate mathemat-
ical model of structural plasticity, the following paragraphs sketch the steps involved
in creating the model suggested by Butz and van Ooyen (2013) as an example. This
model is based on the observation that the creation and deletion of synapses can
bring the postsynaptic neuron’s firing rate into a certain physiological range. The au-
thors consider synaptic elements, namely axonal boutons on the presynaptic side and
dendritic spines on the postsynaptic side. When two such elements are combined, a
synapse is created. The dynamics of the number of synaptic elements for each neuron
depends on a readiness variable c (associated with the calcium concentration), which
indicates the propensity of a neuron to grow synapses. The readiness variable is a
low-pass filtered version of the spiking activity and thus approximates the neuron’s
instantaneous rate up to a scalar multiplier.

The algorithm comprises four steps, which are repeated until the connectivity
converges. First, it continuously updates the spiking activity of the neurons since
each neuron’s mean firing rate influences the creation of synaptic elements. Second,
it updates the readiness c for each neuron:

dc

dt
= −c(t)

τ
+ βδ

(
t− tfj

)
, (1)

i.e., c decays exponentially with the time constant τ and increases by a fixed amount
β whenever the neuron j spikes at tfj , where δ(·) denotes the Dirac delta function.
Third, a homeostatic rule drives the neuron to reach and maintain a target activity by
deleting postsynaptic elements if the instantaneous activity is higher than the target
activity or creating synaptic elements if the current activity is lower than the target
activity. A growth curve defines the speed of these modifications towards a target
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calcium concentration ctarget by means of a growth rate ν and can be expressed as a
linear function

dz

dt
= ν

(
1− c(t)

ctarget

)
. (2)

Alternatively, a downward shifted Gaussian or other more complex function may be
used, as long as it has a zero-crossing with a negative gradient that allows conver-
gence. If the value of z increases or decreases by 1, the neuron grows or deletes a
synaptic element, respectively. The algorithm creates new connections between ran-
domly chosen synaptic elements from the available set in the fourth and last step.
This set comprises synaptic elements generated in previous iterations that are not yet
connected and the connection partners of deleted synaptic elements.

Beyond this specific example, there exists a range of different structural plastic-
ity models: some have rules for deleting, some for forming synapses, and some for
both (for a book, see van Ooyen and Butz-Ostendorf, 2017). Often the algorithm
prunes synapses that do not have the chance to become active again (Iglesias et al.,
2005), are the weakest according to a specific metric (Hawkins and Ahmad, 2016; Roy
et al., 2014), or have too little causal correlation between pre- and postsynaptic spikes
(Bourjaily and Miller, 2011). Sometimes the mechanism’s objective is to maintain a
preset number of connections (Bellec et al., 2017), preserve short-range connections
(Butz et al., 2014), or prune until the connectivity has converged to the most efficient
constellation (Iglesias et al., 2005). In many algorithms, the determining factors for
rewiring are the pre- and postsynaptic activity and the vicinity of other synapses. In
general, one can divide structural plasticity mechanisms into two categories: Hebbian
structural plasticity, which leads to an increase in the number of synapses during
phases of high neuronal activity and, conversely, a decrease in phases of low neu-
ronal activity; and homeostatic structural plasticity, which balances these changes by
removing and adding synapses Fauth and Tetzlaff (2016).

4.2 From mathematical models to simulation
The NEST implementation of the discussed particular structural plasticity mecha-
nism (Diaz-Pier et al., 2016) updates the network connectivity at time intervals that
are long compared to the computational time step used to update the neurons, based
on experimental observations (see Program 3). This slow timescale makes the algo-
rithm more efficient, as the available synaptic elements do not need to be calculated
and communicated at every time step. However, when using structural plasticity to
generate connections in a network, note that convergence is not guaranteed but de-
termined by the growth rate, network connectivity, and network activity; thus, visual
guidance is advised (see Nowke et al. (2018) and Section 7.6).

5 Functional Plasticity
The strength of a synapse is usually parameterized by a single static value, the synap-
tic efficacy or synaptic weight (see Section 3). However, existing synapses can grow
stronger or weaker as an effect of a variety of biophysical mechanisms on both the pre-
and postsynaptic side, phenomena collectively known as functional synaptic plasticity.
These adjustments of synaptic efficacies are likely to form the basis of learning and
memory processes in the brain. Thus, this section addresses the temporal evolution
of synaptic efficacies and the underlying mechanisms.

5.1 From empirical data to mathematical models
Over 70 years ago, Hebb famously postulated that neurons that fire together wire
together (Hebb, 1949). Since then, many phenomenological models of functional plas-
ticity have been derived and developed. Introducing categories brings some order into
the vast landscape of models, even if they do not have clear-cut boundaries and often
overlap. Four categorizations are common. First, with respect to the timescale: while
short-term plasticity models cover timescales from milliseconds to seconds, long-term
plasticity models cover minutes to hours, and homeostatic plasticity models (e.g.,
synaptic scaling) even up to days (Magee and Grienberger, 2020; Morrison et al.,

11



2008). While structural plasticity can already occur over the course of hours (Okabe
et al., 1999), timescales of functional plasticity are typically shorter. One needs struc-
tural plasticity to create new synapses (happening on a long timescale) which then
grow stronger via functional plasticity (happening on a faster timescale). Vice versa,
synapses that have grown weak are more likely to get pruned. To date, models usually
include either functional or structural plasticity but not both together, and the effects
of these mechanisms on synaptic learning are thus studied independently. A second
categorization distinguishes functional plasticity according to the involved mecha-
nisms: Unsupervised learning rules are based on unlabeled data, supervised learning
rules involve a target signal, and reinforcement learning rules function via rewards
(Magee and Grienberger, 2020; Morrison et al., 2008). A third categorization consid-
ers the number of factors that constitute the update formula of the synaptic efficacy:
Standard correlation-based rules usually involve two factors, the pre- and postsynap-
tic spiking, as opposed to three-factor models that involve an additional modulatory
signal, e.g., neuromodulation. Fourth, plasticity can be categorized based on the type
of its activity dependence as either Hebbian or homeostatic plasticity (Fauth and Tet-
zlaff, 2016). Here, Hebbian plasticity refers to synaptic strengthening upon positive
correlations between pre- and postsynaptic activity and weakening in the absence of
it. Sometimes this term is used in a general sense, where the learning window may
be either symmetric or asymmetric, with presynaptic activity immediately preced-
ing postsynaptic activity leading to weight increases while the reverse order leads to
weight decreases. The term “anti-Hebbian” can be used for antisymmetric update
windows where presynaptic activity directly preceding postsynaptic activity weakens
the synapse, whereas the reverse order strengthens it. In the absence of further con-
straints, both Hebbian and anti-Hebbian plasticity may lead to a positive feedback
loop and, consequently, substantial changes in synaptic weights and network activity.
In contrast, homeostatic synaptic plasticity pushes the synaptic efficacy up if activ-
ities are low and down if neuronal activities are high, inducing a negative feedback
loop and stabilizing the dynamics.

Experimental studies show that the efficacy of a synapse can change for a short
time window of hundreds to thousands of milliseconds depending on the history of the
presynaptic spikes (Tsodyks and Markram, 1997; Markram et al., 1998; Gupta et al.,
2000). This phenomenon is termed short-term plasticity (STP), or more precisely,
short-term facilitation (STF) if the efficacy is elevated, and short-term depression
(STD) if the efficacy is decreased. The biophysical mechanism underlying STP is
the dynamics of vesicle pools and spike-triggered exocytosis. On the one hand, af-
ter the generation of a spike, calcium accumulates in the presynaptic axon terminal,
increasing the probability of neurotransmitter release, which enhances the synaptic
efficacy and thus causes STF. On the other hand, repetitive firing leads to the deple-
tion of vesicles and saturation of postsynaptic receptors, which decreases the efficacy
and thus causes STD. The mechanisms for STF and STD are counteracting, and a
combination of both can be present in the same synapse. Depending on the synapse
or neuron type, one of them may be more pronounced. These phenomena form the
basis for many STP models (for a review, see Zucker and Regehr, 2002). The follow-
ing paragraph outlines one possible modeling approach by using the example of the
Tsodyks and Markram (1997) model.

The starting point is the view introduced in Sections 2 and 3: a neuron k receives
spikes from neuron j over a synapse with the weight wjk. Now, to make the static
synaptic weight a dynamical variable, wjk is multiplied by a time-dependent scaling
factor fa(t), modeled by a set of three coupled differential equations:

dfa
dt

= −fa
τi

+ u+f−r δ
(
t− tfj

)
, (3)

dfr
dt

=
fi
τr
− u+f−r δ

(
t− tfj

)
, and (4)

dfi
dt

=
fa
τi
− fi
τr
, (5)

describing the utilization of synaptic resources by each presynaptic spike arriving
at time tfj . Here, fa(t), fr(t), and fi(t) = 1 − fr(t) − fa(t) denote the fractions of
active, recovered, and inactive synaptic resources, respectively, and δ(·) the Dirac
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delta function. The superscripts “−” and “+” refer to the values of the associated
variables before and after their update. Each presynaptic spike increases the active
synaptic resources, i.e., the synaptic weight, and simultaneously reduces the available
(recovered) resources by an amount proportional to u+. The utilization variable u+
mimics the probability of vesicle release, controlled by the calcium concentration in
the axon terminal. In the absence of STF, this utilization is constant. However, in
facilitating synapses, it is dynamic and evolves according to

du
dt

= − u

τfac
+ U

(
1− u−

)
δ
(
t− tfj

)
, (6)

where the parameter U corresponds to the amplitude of the postsynaptic current (the
synaptic weight) in response to a single isolated presynaptic spike. The time constants
τr, τi, and τfac describe the recovery time from synaptic depression, the decay of
the postsynaptic currents, and the decay of the utilization, respectively. Despite
its simplicity, this phenomenological model approximates experimental findings well
(Tsodyks and Markram, 1997).

The modifications of the synaptic efficacy by STP occur only during presynaptic
firing and last for a few hundred milliseconds. After presynaptic firing has stopped,
the synaptic resource variables, and hence the synaptic weight, return to their resting
states fa = 0, fr = 1, fi = 0, u = 0, and wjk. In contrast, spike-timing-dependent plas-
ticity (STDP) has a prolonged effect on synaptic efficacy and thus constitutes a form
of long-term plasticity. This form of plasticity was discovered in several spike pairing
experiments where a pre- and a postsynaptic neuron were repetitively stimulated to
emit spikes at a predefined interval (Markram et al., 1997; Bi and Poo, 1998). Reviews
of the experimental findings can be found in Caporale and Dan (2008), Markram et al.
(2012), and Brzosko et al. (2019). Although the results of these studies vary across
cell types and pairing protocols, they all find that the induced change of the synaptic
efficacy depends on the precise time difference ∆t = tpost− tpre between a pair of pre-
and postsynaptic spikes. Generally, a postsynaptic spike occurring slightly after the
presynaptic spike (∆t > 0) induces long-term potentiation (LTP), whereas a postsy-
naptic spike occurring slightly before the presynaptic spike (∆t < 0) induces long-term
depression (LTD). Thus, STDP can encode a causal relationship between the firing of
the pre- and postsynaptic neuron and the synaptic weight change. Since this finding
follows Hebb’s principle, this type of STDP belongs to the class of Hebbian plasticity
rules.

Formalizing this robust finding based on the above experimental data allows for
mathematical treatment. Morrison et al. (2008) developed a phenomenological model
with only a few free parameters, which reproduces the experimental observations with-
out referencing the underlying molecular mechanisms. They restricted the observables
that can enter the plasticity rule to locally available ones because biologically plau-
sible phenomenological models should only contain terms that are identifiable with
mechanisms that exist in biology. In the case of STDP, the synaptic weight change
depends on the pre- and postsynaptic spike times and potentially also on the current
synaptic weight. Experiments demonstrating that action potentials back-propagating
through the dendritic tree convey information about a postsynaptic spike support the
fact that postsynaptic spikes can be available at the synapse (Markram et al., 1997).

The dependence of LTP and LTD on ∆t is usually captured by exponential func-
tions with decay times τ±. Morrison et al. (2008) give a simple model of the weight
change ∆w for pair-based STDP:

∆w+ = F+(w) e
− |∆t|τ+ if∆t > 0,

∆w− = −F−(w) e
− |∆t|τ− if∆t ≤ 0,

(7)

where the functions F± capture the dependence on the current weight w and have
to be specified further by fitting them to experimental data (Morrison et al., 2007a;
Van Rossum et al., 2000). A spike pair can be defined in different ways: for example,
each presynaptic spike can be paired with the most recent preceding postsynaptic
spike and vice versa, termed the nearest neighbor scheme, or each presynaptic spike
can be paired with all preceding postsynaptic spikes, termed the all-to-all scheme
(Morrison et al., 2008; Burkitt et al., 2004).
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The STDP model described above can serve as a starting point for designing ex-
tended models to describe more nuanced experimental results, for example by includ-
ing the postsynaptic membrane potential as an additional modulatory factor beyond
the pre- and postsynaptic spikes. Along these lines, Clopath and Gerstner (2010) and
Clopath et al. (2010) account for the effects of voltage-dependent receptors and chan-
nels. Their approach is based, among other findings, on experiments showing that
the same spike pairing protocol can, depending on the postsynaptic membrane poten-
tial Vm, induce no change in synaptic weights at all, LTD, or LTP (Ngezahayo et al.,
2000). While a Vm smaller than an experimentally determined threshold potential Θ−
induces neither LTD nor LTP, an intermediate membrane potential Θ− < Vm < Θ+

triggers LTD, and a high Vm > Θ+ enables LTP. To capture this behavior, the mathe-
matical description of the plasticity rule contains terms for facilitation and depression
that are active based on these conditions of the membrane voltage, formally expressed
as Heaviside step functions. With this mechanism, Clopath and Gerstner (2010) were
able to reproduce the complex frequency dependence of the synaptic weight changes
in spike pairing experiments (Sjöström et al., 2001).

In Urbanczik and Senn (2014) the postsynaptic membrane potential is included
as a modulating factor. This plasticity rule, in particular, applies to synapses that
connect to the dendrite of a postsynaptic neuron. Experiments show that presynaptic
spikes that do not cause postsynaptic spikes lead to a depression of synaptic weights
whose strength increases with increasing dendritic voltage (Artola et al., 1990). From
this observation, Urbanczik and Senn (2014) conclude that the synaptic weights are
adjusted such that the dendritic voltage assumes high values if and only if the soma of
the postsynaptic neuron emits spikes. Therefore, in this rule, the difference between
the dendritic voltage and the somatic activity drives the synaptic weight change.

Instead of the postsynaptic membrane potential, a third factor could also be a
neuromodulator concentration, which is motivated by experimental studies (for a
review, see Pawlak et al., 2010) and by the fact that they provide a biologically
plausible implementation of reward signals (Wörgötter and Porr, 2005).

5.2 From mathematical models to simulation
The STP implementation in NEST (see Programs 4 and 5) exploits several practical
properties of the corresponding differential equations for their numerical integration.
Since the synaptic resources are conserved (i.e., the fractions fr, fa, and fi add up
to 1), fa can be eliminated from the system. Furthermore, thanks to its linear form,
the system of coupled differential equations Eqs. (3) to (5) can be integrated exactly
between two consecutive presynaptic spikes (Rotter and Diesmann, 1999). Concretely,
the joint state of u, fr, and fa can be iteratively evolved by multiplying the state at
the previous presynaptic spike with a propagator matrix.

To simulate STDP, Eq. (7) needs to be calculated efficiently (Morrison et al., 2008).
Having restricted the model parameters to those locally available at the synapse facili-
tates the implementation in software (see Program 6). These constraints also improve
the model’s performance, since network simulators running on distributed systems
take advantage of a limited need for global access to variables to reduce memory
consumption and high-latency communication between compute nodes (Stapmanns
et al., 2021; Morrison et al., 2005). The all-to-all pairing scheme can be efficiently
implemented using a specific update scheme of the synaptic traces. These traces rep-
resent a fading memory of past spikes at the synapse without explicit knowledge of all
past spike times (Morrison et al., 2007a, 2008). If a pre- or postsynaptic spike occurs,
the corresponding trace and synaptic weight are updated, while no actions need to
be performed in the periods in between. Defining the exact order of updates in a
plasticity model, particularly with regard to pre- and postsynaptic spike timing, indi-
cated by the “+” and “-” in Eqs. (3) to (5) is crucial and facilitated by the high-level
language NESTML (see Program 7).

More complex learning scenarios, like reinforcement learning, are made possible by
advanced plasticity rules, which, for example, depend on the postsynaptic membrane
potential or neuromodulators (Weidel et al., 2021). However, these rules typically
make it more difficult to discover an effective implementation. For example, neuro-
modulators (e.g., dopaminergic signals) affect several nearby synapses through volume
transmission requiring a notion of physical 3D space (see Section 3.1). Moreover, the
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presence of time-continuous signals in some of these advanced plasticity rules neces-
sitates the storage of the signal history if one wishes to keep the efficient event-driven
scheme of updating the synaptic weights only at presynaptic spike times (Stapmanns
et al., 2021). Depending on how the data structures are laid out in a simulator, ac-
cessing the continuous third-factor variables can be difficult or computationally costly
because they need to be queried for every spike at every synapse. Generally, rules that
require only spike times are more efficient in memory and compute time than rules
that depend on the entire history of variables, like the membrane potential trace.

Given access to the synaptic weights, another form of functional plasticity, weight
normalization, can be realized. It entails keeping the total sum, or a norm of all incom-
ing synaptic strengths of a neuron constant by re-normalizing all its synaptic weights
(see Program 8). Since, in the brain, these weight changes happen on timescales of
several hundreds of milliseconds, the iterative re-normalization takes place on a coarse
time grid, increasing the operation’s efficiency.

Other advanced plasticity rules include, for example, a third-factor postsynaptic
dendritic current (Urbanczik and Senn, 2014) or inhibitory plasticity (Vogels et al.,
2011). The discovery of new plasticity rules can be, to a certain degree, even auto-
mated (Jordan et al., 2021). Furthermore, state models with synaptic tagging and
capture (STC), described, e.g., in Barrett et al. (2009), incorporate even plasticity
effects beyond synapse-specific ones. Ultimately, state-of-the-art computational plas-
ticity models transcend the simple STP and STDP models (see, e.g., Mongillo et al.,
2008). Algorithmically, however, these complicated models often use a combination of
plasticity mechanisms and thus can be synthesized from such a base stack of simpler
models.

6 Heterogeneity
Complexity and heterogeneity are ubiquitous and well-established design principles
in neurobiological systems (Koch and Laurent, 1999), covering a multitude of compo-
nents and mechanisms at various spatial and temporal scales. From an information
processing perspective, such variability is a fundamental component of the system, as
it determines the types of computations a given circuit can perform and constrains
the representational expressivity of its dynamics (Duarte and Morrison, 2019).

6.1 From empirical data to mathematical models
Biological synaptic connectivity is highly diverse in most of its constituent properties,
including the type of neurotransmitter used, the composition of presynaptic vesicles
and docking proteins (affecting release probability), the postsynaptic receptor compo-
sition (affecting efficacy and kinetics of the elicited response), transmitter re-uptake
and re-use, and the involvement of gliotransmission (see, e.g., Parpura and Zorec,
2010), but also properties characterizing signal propagation such as axon diameter
and conductance velocity (Girard et al., 2001; Liewald et al., 2014; Muller et al.,
2018). These various types of diversity translate to a high degree of heterogeneity
in phenomenological parameters characterizing mathematical models of the synaptic
connectivity and dynamics, such as the synaptic weight (Song et al., 2005; Lefort
et al., 2009; Koulakov et al., 2009; Avermann et al., 2012; Ikegaya et al., 2013), synap-
tic time constants (Kuhn et al., 2004; Roxin et al., 2011), response latencies (synaptic
delays; Brunel and Hakim, 1999; Roxin et al., 2011), and parameters specifying the
plasticity dynamics (Kampa et al., 2007). In addition, biological neuronal networks
exhibit a high degree of heterogeneity in the anatomical connectivity structure, such
as the total number of inputs and outputs per neuron (in/out-degrees; Markram et al.,
1997; Feldmeyer et al., 1999, 2002, 2006; Stepanyants et al., 2008; Roxin, 2011), and
the composition of presynaptic source and postsynaptic target neuron populations.

Previous theoretical work on recurrent neuronal networks shows that heterogene-
ity in single-neuron properties or connectivity broadens the distribution of firing rates
(van Vreeswijk and Sompolinsky, 1998; Roxin et al., 2011) and affects the stability of
asynchronous or oscillatory states as well as the level of synchrony (Tsodyks et al.,
1993; Golomb and Rinzel, 1993; Brunel and Hakim, 1999; Neltner et al., 2000; Denker
et al., 2004; Roxin, 2011; Mejias and Longtin, 2012; Pfeil et al., 2016). A large num-
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ber of theoretical and experimental studies point at the benefit of heterogeneity for
the information processing capabilities of neuronal networks (Stocks, 2000; Shamir
and Sompolinsky, 2006; Chelaru and Dragoi, 2008; Osborne et al., 2008; Padmanab-
han and Urban, 2010; Marsat and Maler, 2010; Holmstrom et al., 2010; Mejias and
Longtin, 2012; Yim et al., 2013; Lengler et al., 2013; Mejias and Longtin, 2014; Duarte
and Morrison, 2019). Therefore, modeling studies aiming at understanding the dy-
namical and functional principles of biological neuronal networks need to account for
the synaptic (and other types of) heterogeneity.

Depending on the type of synaptic heterogeneity, its implementation in mathe-
matical models may follow different strategies. Synaptic heterogeneity is expressed
on local scales, such as in the connections between neurons in a given layer of a corti-
cal column, and on large scales, such as in cortical inter-area connections. One form
of this heterogeneity results from cell-type, layer, or area specificity. It reflects the
anatomical and electrophysiological diversity of neurons in different brain regions and,
in addition, emerges from specific interactions with other components of the nervous
system or with the environment during brain development and learning. In mathe-
matical models, this specificity is usually accounted for by subdividing the network
into several populations representing different cell types or brain regions and applying
distinct connectivity, synapse, and plasticity parameters for each pair of populations
(Fig. 3A).

Another form of synaptic heterogeneity appears in an unspecific, quasi-random
manner. It refers to variations in the synaptic characteristics across an ensemble of
neuron pairs of seemingly identical type, for example, connections between a group of
neurons with similar morphological and electrophysiological characteristics located in
the same layer of a given cortical column (Fig. 3B). Similarly to the cell-type-, layer-,
or area-specific diversity described above, the unspecific forms of heterogeneity are
partly caused by synaptic plasticity, i.e., by adapting synaptic parameters during
learning and development. In this respect, unspecific heterogeneity is not truly un-
specific; it is, on the contrary, the result of fine-tuning, optimization, or specialization.
Without knowing the details of these processes, the resulting diversity appears ran-
dom or unspecific. Moreover, the distinction between type-specific and unspecific
forms of heterogeneity relies on the assumption that different neuron types are dis-
tinguishable (Battaglia et al., 2013). Without knowing the characteristics separating
two neuronal phenotypes, these cell classes are treated as one type, and the observed
diversity in neuron and synapse parameters appears unspecific.

To some extent, synaptic heterogeneity may also result from variations in exper-
imental protocols and in unobserved variables affecting the synapse characteristics.
Synaptic weights, for example, are often assessed in voltage-clamp experiments as the
amplitudes of somatic postsynaptic currents evoked by presynaptic action potentials.
The resulting synaptic weights are then determined not just by the properties of the
pre- and postsynaptic cells or by the synapse type and position but also by the hold-
ing potential or the electrical characteristics of the electrode-cell contact. Even in the
absence of variations in the experimental protocol, the amplitude of the postsynap-
tic response is affected by fluctuations in the postsynaptic membrane potential and
by the pre- and postsynaptic spike history. Hidden variables such as the spike his-
tory or the synapse position are often not monitored in experimental studies. From
the modeler’s perspective, it is therefore not straightforward to decide what forms
of reported heterogeneity should be accounted for in a given model and what forms
are perhaps already represented indirectly by other model features (for example, the
voltage dependence of synaptic currents, short-term plasticity, or dendritic filtering
in multicompartment models).

In mathematical models, unspecific heterogeneity is typically accounted for in a
probabilistic manner. Here, the parameters characterizing synaptic connectivity, such
as synaptic weights, time constants, delays, in-degrees, etc., are randomly drawn from
certain distributions. In particular, in the brain, many properties follow long-tailed
distributions, often approximating the lognormal distribution (Buzsáki and Mizuseki,
2014; Robinson et al., 2021; Morales-Gregorio et al., 2022). These distributions, or
the parameters characterizing them, such as the mean or the standard deviation, are
extracted from experimental data. The rationale underlying this probabilistic mod-
eling approach is twofold. First, it acknowledges that the synaptic parameters are
typically not known for every single synapse in a given network. The majority of
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Figure 3: Specific and unspecific heterogeneity in synaptic connectivity. A
Sketch of a neuronal network comprising three populations of neurons of type X,
Y , and Z (boxes). The properties of the different projections (arrows), such as the
number of synapses, the synaptic weights, synaptic time constants, or synaptic de-
lays, depend on the types of pre- and postsynaptic neurons. We refer to the resulting
synapse-type specific diversity as specific heterogeneity. B For each type of projection
{PQ} from population Q to population P (P,Q ∈ {X,Y, Z}), the synaptic parame-
ters are distributed (illustrated here with bell-shaped curves). We refer to this form of
variability as unspecific heterogeneity. The parameters characterizing each distribu-
tion, such as the mean (horizontal position of each curve) or the variance, are usually
synapse-type specific.

experimental studies provide data for small subsets of synapses, often pooled across
different recording sessions or animals. Second, the probabilistic approach greatly
simplifies the models, as the total number of parameters is substantially reduced. In
probabilistic modeling approaches, the “model” is not defined by a single instantia-
tion of a network and all its parameters but by the ensemble of many independent
realizations generated from a given set of parameter distributions. Observations or
findings obtained from a single network realization are meaningless unless they appear
generically, i.e., frequently, for many different model realizations.

As described above, synaptic heterogeneity is often the result of an adaptation,
development, or fine-tuning process. As demonstrated in a number of studies (e.g.,
see Prinz et al., 2004; Achard and De Schutter, 2006; Bahuguna et al., 2017), such
processes typically lead to dependencies between parameters. Certain plasticity pro-
cesses, for example, lead to a competition (anti-correlation) between synapses, such
that the strengthening of one synapse results in the weakening of another synapse (Ab-
bott and Nelson, 2000; Tetzlaff et al., 2011). In a comprehensive probabilistic model,
the set of parameters {ξ1, ξ2, . . . , ξn} for a specific network realization is generated ac-
cording to a joint probability density function (pdf) p1,...,n(x1, x2, . . . , xn), describing
the probability of observing ξ1 = x1, ξ2 = x2, . . . , and ξn = xn. This joint pdf cap-
tures all parameter dependencies. Many modeling studies neglect parameter depen-
dencies and assume that the joint pdf p1,...,n(x1, x2, . . . , xn) = p1(x1)p2(x2) . . . pn(xn)
factorizes. In these studies, each parameter ξi is drawn from its respective marginal
distribution pi(·), independently of all other parameters. As before, this simplifying
assumption typically reflects a lack of knowledge, as the available experimental data
generally do not capture parameter dependencies. Theoretical studies show that this
choice can have detrimental consequences for the dynamical and functional properties
of the resulting system. Bahuguna et al. (2017), for example, demonstrate that when
the parameter dependencies are unknown, replacing all parameters by their respective
mean (and thereby ignoring diversity) can be a better choice than drawing them from
their marginal distributions.

A more direct approach toward modeling synaptic heterogeneity is the explicit
account of known plasticity, learning, or developmental processes that dynamically
lead to the observed diversity in synaptic parameters, including the dependencies de-
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scribed above (Morrison et al., 2007a; Tetzlaff et al., 2011). Similarly, multivariate
parameter distributions may arise from optimization procedures or supervised learn-
ing methods fitting the model to some desired target dynamics or behavior (Eliasmith
and Anderson, 2002; Bahuguna et al., 2017; Bellec et al., 2020). While these top-down
approaches are promising and commonly used in state-of-the-art computational neu-
roscience, they bear the risk that the underlying data or targets do not sufficiently
constrain the model of the actual biological system and hence lead to a multitude
of solutions that may not be realized in nature. A combination of bottom-up and
top-down constraints appears to be the most reliable method to reduce this form of
uncertainty.

6.2 From mathematical models to simulation
Investigating the role of heterogeneity in synaptic connectivity by means of analytical
mathematical methods is challenging (Brunel and Hakim, 1999; Roxin et al., 2011).
Therefore, theoretical studies often neglect heterogeneity to simplify the mathemat-
ical treatment and provide intuitive insight. A common strategy underlying many
mathematical approaches is to reduce the dimensionality of the neuronal network
dynamics by assuming that the network can be decomposed into homogeneous sub-
populations, each of which comprises neurons with identical neuronal and synaptic
parameters. While this approach can account for the specific heterogeneity described
above to some extent, it can hardly describe the effects of unspecific heterogeneity.
Simulation enables us to test whether the insights obtained under these homogeneity
assumptions remain valid if heterogeneity in synaptic parameters is considered.

Even in simulation studies, however, accounting for synaptic heterogeneity is
challenging. Acknowledging that every synapse is unique requires representing each
synapse with the full individual set of parameters. In a homogeneous network where
all synapses have identical properties, the connectivity is fully described by the ad-
jacency matrix (which neuron is connected to which, and how often) and a small
set of parameters describing the synapse characteristics, such as the synaptic weight
w, the delay d, or the synaptic time constant τ . In a heterogeneous network where
each synapse {j → i} is unique, in contrast, the individual weights wij , delays dij ,
and time constants τij need to be stored for each connection. Therefore, representing
the heterogeneous connectivity in simulations of neuronal networks at natural den-
sity imposes high memory demands for the underlying computing architecture (see
Section 7.7).

In models of neuronal networks with heterogeneous synaptic connectivity, the
heterogeneity is either implemented by drawing synapse parameters from predefined
distributions or by a self-organization process driven by some plasticity or learning
dynamics (see Section 6.1). Simulations based on the first, the probabilistic approach,
require efficient methods of drawing random numbers from specified distributions
during the network generation phase. The NEST simulator, for example, permits the
high-level specification of probabilistic connection rules by the user (see Section 2),
including distributions of synaptic weights, synaptic delays, or plasticity parameters.
The task of generating a specific connectivity realization by drawing random numbers
from these distributions is then delegated to fast low-level (C++) routines. The
second approach relies on simulating plastic networks or on numerical optimization
methods. Strategies for simulating different forms of synaptic plasticity are described
in Sections 4 and 5. Simulating plastic networks with natural connection density is
still a major challenge in computational neuroscience. Slow biological processes such
as learning and development on timescales of hours, days, and years are presently
inaccessible to simulation (or restricted to small and highly simplified models) because
of the required wall-clock time. In this respect, dedicated neuromorphic computing
architectures are particularly interesting as simulation platforms for neuroscience,
as they offer the potential for faster-than-real-time simulations and hence, for an
understanding of plasticity mechanisms on long timescales (Furber, 2016; Wunderlich
et al., 2019).
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7 Notes
In this section, we highlight some of the challenges and pitfalls that may be encoun-
tered during modeling and simulation.

7.1 Keeping model refinements biologically plausible
Developing a mathematical model that exhibits a dynamic behavior close to empirical
biological data involves iterative optimization procedures, e.g., fitting the experimen-
tal data or calibrating the model parameters. While this optimization improves the
model in some aspects, it may, at the same time, alter it in ways no longer motivated
by biological observations (Achard and De Schutter, 2006). For example, fitting is
inherently biased in that, by definition, it improves the validation of certain model
features at the cost of those not included in the fitting procedure. Thus, each opti-
mization step should be conducted cautiously and checked for biological plausibility.

7.2 Reproducible simulations
For small-scale simulations, sometimes custom simulation kernels are written. How-
ever, besides possibly duplicating published and established routines, these self-made
frameworks are likely to contain bugs and lack documentation, for instance, on edge-
case behavior. Therefore even for small networks, it helps to use standardized simula-
tors. In particular, these simulators offer the benefit of being well characterized under
different operating conditions using a diverse array of automated tests, being updated
on a regular release cycle, and benefiting from the open-source model of iterative re-
finement (Zaytsev and Morrison, 2013). All these factors increase the likelihood of
long-term reproducible results.

An individual simulator should exhibit replicable behavior: repeated simulations
of the same model should yield bitwise identical results, regardless of the number
of threads or processing nodes used, due to the use of deterministic pseudo-random
number generators. However, simulating the same model on a different platform or
using a different numerical solver or time step size for ordinary differential equations
(ODEs) may alter the results, especially in network models exhibiting chaotic and
unstable dynamics. Nonetheless, results and conclusions should be reproducible, ob-
taining the same overall quantitative and qualitative conclusions (for a commentary
on this terminology, see Plesser, 2018). Reproducibility of results requires the origi-
nal software to be available (including libraries and other dependencies) and, where
applicable, the original (raw or pre-processed) dataset(s) and relevant metadata.

Similar to the model descriptions, it increases the reproducibility of methods and
results (Goodman et al., 2016) to use and contribute to existing simulation frameworks
by reporting bugs, improving implemented methods, and developing and publishing
custom modules of the respective framework, e.g., in NEST, in the form of extension
modules (see Program 9).

7.3 Distribution of compute workload
It is beneficial to distribute the workload evenly across compute nodes, even for
networks with complex connectivity and heterogeneous population properties. One
way to achieve this is a round-robin distribution of neurons across compute nodes,
i.e., in the case of M compute nodes, assigning neuron n to node (n mod M).

In general, the computing system’s size affects the workload distribution. On small
machines, the number of synapses per neuron is larger than the number of compute
nodes the simulation runs on. Hence, each neuron typically has many targets on
every compute node. However, with growing network size and the emergence of new
supercomputer architectures over the last decades, the ratio between the numbers of
synapses per neuron and compute nodes is in some cases reversed. On these new-
generation supercomputers, the distribution of neurons over many nodes decreases the
chance that a neuron shares a node with a connected partner, especially considering
the sparsity of biological neuronal networks. Mitigating this issue, even more mod-
ern compute nodes follow the opposite trend: they possess more memory and cores
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per processor and thus more processing power, which reduces the number of nodes
required for the simulation and brings the neurons and their targets closer together.

One of the main computational challenges remains the connectivity of neuronal
networks. For example, representing each of the estimated 1014 synaptic connections
in the brain individually by two double-precision numbers requires about 1.6 PB of
main memory. Furthermore, neurons form connections with nerve cells not only in
their vicinity but also in various remote areas. This feature distinguishes neuronal
simulations from simulations of classical physical systems, that use, for example, finite-
element methods exploiting the locality of physical interactions. However, memory
and communication bandwidth, as well as cache efficiency, are more critical than
floating-point performance of spike communication to local and distant targets (van
Albada et al., 2014).

Future work should address how computer network connectivity and the simu-
lation distribution across compute nodes can follow (simulated) biological network
organization, such as a modular organization on both small and large scales in the
brain.

7.4 Scalability in theory and practice
Recording the simulation time under varying network or computing system sizes char-
acterizes an implementation’s scalability, which is essential to judging its efficiency
(Jordan et al., 2018). The scenario of increasing the computing resources while keep-
ing the network size fixed is called strong scaling, and the scenario of increasing the
network size and computing resources proportionally is called weak scaling.

Ideally, when in strong scaling the hardware becomes twice as powerful, the sim-
ulation time is divided by two. However, in practice, the gains are usually less due
to communication overhead and other bottlenecks in the system. Sometimes, a par-
allelization can even exhibit a super-linear speed-up (Kurth et al., 2022), but this
behavior might only become apparent at very large computing system scales.

Scaling up standard network models to test weak scaling can induce unrealistic ac-
tivity patterns, for example, regarding the regularity and synchrony of spiking. Since
synapses tend to vastly outnumber neurons, the number of synapses is an important
determinant of the necessary computing resources. Thus, a reasonable approach is
to keep the in-degrees constant when increasing the model size and thereby reduce
the overall connection probability (see, e.g., Jordan et al., 2018). This method tends
to lessen activity correlations between neurons and hence diminish synchrony. In
the case of ideal weak scaling, a network of twice the size should run for twice the
time, but in practice, the performance is worse due to the same reasons as for strong
scaling. Moreover, there is a complex dependence of the scaling behavior on network
properties, such as the connectivity’s modularity (van Albada et al., 2014).

7.5 Precise spike times in discrete-time simulation
A typical simulation of a continuous-time dynamical process runs in discrete steps of
time ∆t. However, exchanging events (spikes) on a grid can cause synchronization
in the network as a pure simulation artifact. This effect disappears in the limit of
∆t→ 0, but decreasing the time step increases the time necessary for the simulation
to complete, so a tradeoff has to be made. A more computationally efficient solution
is to store an extra offset value in spike events, which, in combination with a minimum
synaptic delay and an algorithm that finds the precise time of spiking, decouples the
simulation time step from the temporal precision with which spikes are exchanged
(Hanuschkin et al., 2010).

7.6 Simulating until convergence
Simulating neuroplasticity for too short of a period, especially longer-timescale pro-
cesses like normalization and neuromodulation, is a common pitfall. Several of these
dynamic processes have the potential to cause an abrupt bifurcation in the system
late in the simulation. Additionally, some plasticity rules produce a long-tailed distri-
bution of synaptic strengths (Teramae et al., 2012), whereby the distribution reaches
equilibrium again only after an extended simulation period. A limited measurement
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duration can also be a problem in empirical neuroscience, but simulations can, in
principle, run as long as desired. The only limitations are the computing resources
available (as these need to be shared with other users on high-performance computing
systems) and the amount of time the simulation takes to complete, which depends on
the simulator’s efficiency. Simulating until the measure of learning performance has
adequately converged can circumvent this pitfall to some degree.

7.7 Limited synaptic weight resolution
Limiting the numerical resolution of synaptic parameters, such as the synaptic weight,
appears to be an obvious strategy to reduce memory and compute load. To some
extent, nature itself copes well with quantized synaptic weights: Transmission in
chemical synapses is quantized due to the release of neurotransmitters in discrete
packages from vesicles in the presynaptic axon terminals. The analysis of sponta-
neous (miniature) postsynaptic currents, i.e., postsynaptic responses to the release
of neurotransmitters from single presynaptic vesicles, reveals that the resolution of
synaptic weights is indeed finite for chemical synapses. As shown by Malkin et al.
(2014), the amplitudes of spontaneous excitatory postsynaptic currents recorded from
different types of excitatory and inhibitory cortical neurons follow a unimodal distri-
bution with a peak at about 20 pA and a lower bound at about 10 pA. Such a cut-off
is present despite several factors that may wash out the discreteness of the synaptic
transmission, such as variability in vesicle sizes, variability in the position of vesi-
cle fusion zones, quasi-randomness in neurotransmitter diffusion across the synaptic
cleft, and variability in postsynaptic receptor densities. However, the discreteness of
synaptic strengths is obscured for evoked synaptic responses involving neurotransmit-
ter release from many presynaptic vesicles and for superpositions of inputs from many
synapses, and thus unlikely to play a particular role in the dynamics of the neuronal
network as a whole.

Inspired by these observations, Dasbach et al. (2021) systematically investigated
the effects of a limited synaptic weight resolution on the dynamics of recurrent spiking
neuronal networks resembling local cortical circuits. They show that a naive quantiza-
tion of synaptic weights generally leads to a distortion of the firing statistics. However,
in the example of one network type, they could demonstrate that the firing statistics
remain unaffected under a weight discretization that preserves the mean and variance
of the total synaptic input currents. In networks with sufficiently heterogeneous in-
degrees, the firing statistics stay constant, even when replacing all synaptic weights
with the mean of the weight distribution, i.e., entirely neglecting the unspecific form
of heterogeneity in synaptic weights. Applying this finding in simulations reduces the
memory demands substantially. The effect of discretized synaptic weights in networks
undergoing different forms of synaptic plasticity has rarely been investigated (Pfeil
et al., 2012) and remains a subject for future study.

7.8 Precise specification of the model
An incomplete and ambiguous description of a model without following conventions
can impede understanding by the reader and thus the reproducibility of the respec-
tive study. The first step to avoiding this pitfall is to gain a clear picture of the
requirements a model description must fulfill. For this, Nordlie et al. (2009) propose
that a neuronal network model description must contain a complete and detailed
account of its architecture and the dynamics of its parts. In the formalization of
model descriptions, computational neuroscience is less mature than other fields of
science. Nonetheless, best practice guidelines are emerging that suggest the use of
standardized tables of the model characteristics that cover the network architecture
and connectivity, all neuron and synapse models used, the applied input stimuli, and
the recorded data, described by a combination of text, equations, figures, subtables,
and pseudocode (Nordlie et al., 2009). Formalized sketches of the network and uni-
fied connectivity concepts (Senk et al., 2022) help computational neuroscientists to
unequivocally convey their models and, consequently, readers to understand them.

It is advisable to use one of the numerous formal languages that facilitate such
specifications and make them consistent, e.g., NeuroML (Gleeson et al., 2010), NESTML
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(Plotnikov et al., 2016), or PyNN (Davison et al., 2009). Most of such languages ad-
here to the class of either declarative or procedural languages. While a declarative
language specifies the model’s features, a procedural language specifies the series of
commands or instructions needed for constructing the model. Best practices for ei-
ther of these approaches include formally defined syntax and semantics or an API
specification, both uniquely identified by version numbers.

It is good practice to keep the specification and implementation of a model sepa-
rate. For example, implementation details such as the time resolution and the spike
threshold detection method are essential for the reproducibility of the results but are
not part of the model itself. Like the model description, the implementation specifi-
cation should be complete and sufficient, as it can be challenging to reverse-engineer
implementations and test the robustness of the results to implementation alterations
(Nordlie et al., 2009). However, the model should be robust to different choices in
such implementation details.

Generating an executable representation of the model can be fully automated.
For example, tools like NESTML specialize in processing the model descriptions of
different complexity levels and in verbose formats like XML, creating executable im-
plementations and visualizations, and facilitating debugging (Blundell et al., 2018).

To summarize, it is advisable to follow standardized model descriptions, implemen-
tations, and generation procedures wherever possible for a project and ideally share
the models with the community in dedicated databases for computational neuro-
science models like ModelDB (McDougal et al., 2016) or Open Source Brain (Gleeson
et al., 2019).

8 Conclusions
Large-scale neuronal network simulations are a key tool for understanding brain pro-
cesses. They make the complex nonlinear dynamics of neuronal activity, which are
out of reach with analytic methods, accessible to inquiry. Moreover, continuous in-
teraction between computational modeling and advances in empirical understanding
have iteratively refined simulation approaches throughout the history of computa-
tional neuroscience. We hence outline a few promising directions for empirical and
modeling approaches to work together.

New empirical data can bolster simulation studies in many ways. For example,
long-term tracking of synapses in vivo will elucidate the relationship between synaptic
plasticity and function (Holtmaat et al., 2009). Besides, recordings of complete con-
nectomes at single-neuron resolution are becoming feasible for ever-larger brains and
may soon be available on the scale of a mouse brain (Foxley et al., 2021). Data-driven
models based on such detailed and specific connectivity are complemented by models
whose connectivity is generated with statistical approaches. The latter models also
profit from more available data constraining their parameters; higher-level network
organization can, for instance, be informed by data on hierarchical modularity and
small-world properties. Sometimes, the conditions of data retrieval are inconsistent
between experiments, or experiments only cover a small subset of the model system,
and modeling could benefit from additional studies to fill the gaps.

How the available data are integrated into models depends on the particular re-
search question and the level of abstraction appropriate for it. The modeler needs
to decide (or find out) which features and phenomena of the natural system need
to be represented in detail and which ones can be approximated. For instance, a
biophysically detailed model with discrete vesicle release dynamics would be suit-
able when investigating how a compound influencing vesicle fusion to the membrane
affects synaptic transmission. In contrast, investigating the compound’s effects on
large-scale network dynamics could necessitate approximation of the vesicle release
by a simplified set of continuous quantities and differential equations. In essence,
a good computational model should represent the relevant attributes of the stud-
ied biological structure, have explanatory power and simultaneously not necessitate
extensive simulation time.

There are several ways in which the infrastructure of computer simulations itself
can innovate, indicated by current trends and feature requests from the community.
Simulation efficiency is still a bottleneck, especially in simulations involving plasticity,
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as they need to run for a comparatively long time. Furthermore, large-scale networks
require powerful, high-performance compute clusters, which provide large amounts
of RAM, and enable running the simulation in parallel and distributed across many
CPUs or GPUs which are interconnected through a low-latency network. More ad-
vanced synaptic plasticity rules, for example involving tripartite synapses influenced
by astrocytes or neuromodulators like dopamine, still lack software support for effi-
cient simulations on a larger scale. Finally, simulations at cellular resolution could be
extended towards multiphysics modeling by incorporating other physical phenomena.
Such models could account for the volume diffusion of neuromodulators or the electric
field in the neuropil to simulate ephaptic coupling for instance.

In general, what should one strive for in a model? The statistician George Box
famously said, “All models are wrong, but some are useful.” Although it helps to
remind ourselves of the difficulties of modeling, to say that all models are wrong is
not doing them justice, as put by Sir David R. Cox in a comment on Chatfield (1995):
“The very word model implies simplification and idealization. The idea that complex
physical, biological or sociological systems can be exactly described by a few formulae
is patently absurd. The construction of idealized representations that capture im-
portant stable aspects of such systems is, however, a vital part of general scientific
analysis and statistical models [. . .]”. A model with unlimited parameters can fit the
data perfectly but at the cost of generalizability and explanatory power. Ockham’s
razor, or the law of parsimony, provides a helpful heuristic in this context, guiding
us to prefer the theory with fewer parameters between two competing theories. This
objective is also formalized in Bayesian information criteria, which penalize models
with larger numbers of parameters. In other words, the aim to reduce complexity
should guide modeling choices to address a given research question.

However, condensing the biophysical details and terminology to arrive at a parsi-
monious, phenomenological formulation could impede testing such a minimal model
experimentally. Moreover, the rigorous application of Ockham’s razor leads to models
optimized for single phenomena (e.g., connectivity, synaptic transmission, structural
or functional plasticity) that are thus hard to combine. To solve this problem, after
reducing the phenomena to their essential variables, we should express each model
in a way that allows for their combination. Biophysical details could provide contact
points between model concepts from different subdomains. Progress in integrating
heterogeneous phenomena in large-scale models requires that models act as platforms
that can be modified and extended over time. For example, after a minimal model
has achieved a satisfactory performance, modelers could test whether the same results
still hold for models of greater biophysical detail.

As a foreseeable trend, more and more computational neuroscientists will adopt
procedures ensuring the reproducibility of their methods and results over the follow-
ing years. This approach includes, where possible, data, model, and code sharing
in open-access online repositories, adherence to open standards for model formats
and software tools, active management of metadata, containerized distribution of de-
pendencies, unit testing, and continuous integration instead of creating new in-house
toolchains from the ground up. Last but not least, active contribution to an existing
model database or open-source software, be it as small as a feature request, is a low-
threshold action conducive to reproducible research everyone can take. Ultimately,
the community’s research interests in the form of these requests and contributions
shape the landscape of available models in an open-access simulator.
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nestml

3. https://www.nest-simulator.org/py_sample/structural_plasticity/

4. https://nest-simulator.readthedocs.io/en/latest/auto_examples/tsodyks_depressin
g.html

5. https://nest-simulator.readthedocs.io/en/latest/auto_examples/tsodyks_facilitatin
g.html

6. https://nestml.readthedocs.io/en/latest/models_library/stdp.html

7. https://nestml.readthedocs.io/en/latest/nestml_language/synapses_in_nestml.html

8. https://nest-simulator.readthedocs.io/en/latest/guides/weight_normalization.html

9. https://nest-extension-module.readthedocs.io/en/latest/extension_modules.html
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