000916426 001__ 916426
000916426 005__ 20230224084255.0
000916426 0247_ $$2doi$$a10.3390/nano12203591
000916426 0247_ $$2Handle$$a2128/33544
000916426 0247_ $$2pmid$$a36296780
000916426 0247_ $$2WOS$$aWOS:000875933400001
000916426 037__ $$aFZJ-2022-06226
000916426 082__ $$a540
000916426 1001_ $$00000-0002-1158-1491$$aKhodan, Anatole$$b0$$eCorresponding author
000916426 245__ $$aEffects of Surface Chemical Modification by Ethoxysilanes on the Evolution of 3D Structure and Composition of Porous Monoliths Consisting of Alumina Hydroxide Nanofibrils in the Temperature Range 25–1700 °C
000916426 260__ $$aBasel$$bMDPI$$c2022
000916426 3367_ $$2DRIVER$$aarticle
000916426 3367_ $$2DataCite$$aOutput Types/Journal article
000916426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673594696_23970
000916426 3367_ $$2BibTeX$$aARTICLE
000916426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916426 3367_ $$00$$2EndNote$$aJournal Article
000916426 520__ $$aBulk nanomaterials with an open porosity offer exciting prospects for creating new functional materials for various applications in photonics, IR-THz optics, metamaterials, heterogeneous photocatalysis, monitoring and cleaning toxic impurities in the environment. However, their availability is limited by the complexity of controlling the process of synthesis of bulk 3D nanostructures with desired physicochemical and functional properties. In this paper, we performed a detailed analysis of influence of a silica monolayer chemically deposited on the surface of a monolithic ultraporous nanostructure, consisting of a 3D nanofibril network of aluminum oxyhydroxide, on the evolution of structure and morphology, chemical composition and phase transformations after heat treatment in the temperature range of 20−1700 °C. The experimental results are interpreted in the framework of a physical model taking into account surface and volume mass transport and sintering kinetics of nanofibrils, which made it possible to estimate activation energies of the surface diffusion and sintering processes. It is shown that the presence of a surface silica monolayer on the surface affects the kinetics of aluminum oxyhydroxide dehydration and inhibits diffusion mass transfer and structural phase transformations. As a result, the overall evolution of the 3D nanostructure significantly differs from that of nanomaterials without surface chemical modification.
000916426 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000916426 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916426 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000916426 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000916426 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000916426 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000916426 7001_ $$00000-0001-6128-958X$$aKanaev, Andrei$$b1
000916426 7001_ $$0P:(DE-HGF)0$$aEsaulkov, Mikhail$$b2
000916426 7001_ $$0P:(DE-HGF)0$$aKiselev, Mikhail$$b3
000916426 7001_ $$00000-0002-6645-692X$$aNadtochenko, Victor$$b4
000916426 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano12203591$$gVol. 12, no. 20, p. 3591 -$$n20$$p3591 -$$tNanomaterials$$v12$$x2079-4991$$y2022
000916426 8564_ $$uhttps://juser.fz-juelich.de/record/916426/files/nanomaterials-12-03591-v2-1.pdf$$yOpenAccess
000916426 8564_ $$uhttps://juser.fz-juelich.de/record/916426/files/nanomaterials-12-03591-v2.pdf$$yOpenAccess
000916426 909CO $$ooai:juser.fz-juelich.de:916426$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000916426 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000916426 9141_ $$y2022
000916426 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916426 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-26T21:24:06Z
000916426 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-26T21:24:06Z
000916426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-26T21:24:06Z
000916426 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000916426 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000916426 920__ $$lyes
000916426 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000916426 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
000916426 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000916426 980__ $$ajournal
000916426 980__ $$aVDB
000916426 980__ $$aUNRESTRICTED
000916426 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000916426 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000916426 980__ $$aI:(DE-588b)4597118-3
000916426 9801_ $$aFullTexts