001     916435
005     20230328130149.0
024 7 _ |a 10.1109/AICCSA56895.2022.10017883
|2 doi
024 7 _ |a 2128/33797
|2 Handle
024 7 _ |a WOS:000932894200052
|2 WOS
037 _ _ |a FZJ-2022-06229
041 _ _ |a English
100 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications
|g AICCSA
|c Zayed University, Abu Dhabi
|d 2022-12-05 - 2022-12-07
|w U Arab Emirates
245 _ _ |a A Fast Hybrid Deep Neural Network Model for pushing behavior detection in human crowds
260 _ _ |c 2023
|b IEEE
300 _ _ |a 1-2
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1674821874_20490
|2 PUB:(DE-HGF)
520 _ _ |a Deep learning technology is regarded as one of the latest advances in data science and analytics due to its learning abilities from the data. As a result, deep learning is widely applied in the human crowd analysis domain. Although it has achieved remarkable success in this area, a fast and robust model for pushing behavior detection in the human crowd is unavailable. This paper proposes a model that allows crowd-monitoring systems to detect pushing behavior early, helping organizers make timely decisions before dangerous situations appear. This particularly becomes more challenging when applied to real-time video streams of crowded events, which the proposed model accomplishes with reasonable time latency. To achieve this, the model employs a hybrid deep neural network.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027)
|0 G:(BMBF)01DH16027
|c 01DH16027
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Maree, Mohammed
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 2
|u fzj
773 _ _ |a 10.1109/AICCSA56895.2022.10017883
856 4 _ |u https://ieeexplore.ieee.org/document/10017883
856 4 _ |u https://juser.fz-juelich.de/record/916435/files/Ahmed%20Alia%20Extended%20Abstract-AICCSA2022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916435
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132077
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21