000916476 001__ 916476
000916476 005__ 20240712101052.0
000916476 0247_ $$2doi$$a10.1039/D1CP04580F
000916476 0247_ $$2ISSN$$a1463-9076
000916476 0247_ $$2ISSN$$a1463-9084
000916476 0247_ $$2Handle$$a2128/33239
000916476 0247_ $$2pmid$$a35142769
000916476 0247_ $$2WOS$$aWOS:000753565300001
000916476 037__ $$aFZJ-2022-06268
000916476 082__ $$a540
000916476 1001_ $$0P:(DE-Juel1)196020$$aBecker, Daniel$$b0
000916476 245__ $$aReal-time monitoring of aerosol particle formation from sulfuric acid vapor at elevated concentrations and temperatures
000916476 260__ $$aCambridge$$bRSC Publ.$$c2022
000916476 3367_ $$2DRIVER$$aarticle
000916476 3367_ $$2DataCite$$aOutput Types/Journal article
000916476 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671623063_4311
000916476 3367_ $$2BibTeX$$aARTICLE
000916476 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916476 3367_ $$00$$2EndNote$$aJournal Article
000916476 520__ $$aIn the present study, time-resolved aerosol particle formation from sulfuric acid vapor is examined with special attention to the stabilization of molecular clusters in the early phase of unary nucleation. An important factor governing this process is the amount of condensable acid vapor. Here it is produced from fast gas-phase reactions in a batch-type reaction cell for which we introduce modifications enabling real-time monitoring. The key component for size- and time-resolved detection of ultrafine particles is a new 1 nm-SMPS. With this new tool at hand, the effect of varying the precursor concentration over two orders of magnitude is investigated. We demonstrate the ability to tune between different growth scenarios as indicated by the size-resolved particle traces which exhibit a transition from sigmoidal over quasi-stationary to peak-like shape. The second key parameter relevant for nucleation studies is the temperature-dependent cluster evaporation. Due to a temperature rise during the mixing stage of the experiment, evaporation is strongly promoted in the early phase. Therefore, the present study extends the T-range used in, e.g., smog chambers. We investigate this temperature effect in a kinetic simulation and can successfully combine simulated and measured data for validating theoretical evaporation rates obtained from DLPNO-CCSD(T0)-calculations.
000916476 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000916476 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916476 7001_ $$00000-0001-6249-4382$$aHeitland, Jonas$$b1
000916476 7001_ $$0P:(DE-Juel1)178087$$aCarlsson, Philip T. M.$$b2
000916476 7001_ $$00000-0003-3736-4329$$aElm, Jonas$$b3
000916476 7001_ $$00000-0001-9900-3081$$aOlenius, Tinja$$b4
000916476 7001_ $$0P:(DE-HGF)0$$aTödter, Sophia$$b5
000916476 7001_ $$0P:(DE-HGF)0$$aKharrazizadeh, Amir$$b6
000916476 7001_ $$00000-0001-7305-6230$$aZeuch, Thomas$$b7$$eCorresponding author
000916476 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D1CP04580F$$gVol. 24, no. 8, p. 5001 - 5013$$n8$$p5001 - 5013$$tPhysical chemistry, chemical physics$$v24$$x1463-9076$$y2022
000916476 8564_ $$uhttps://juser.fz-juelich.de/record/916476/files/d1cp04580f.pdf$$yOpenAccess
000916476 909CO $$ooai:juser.fz-juelich.de:916476$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196020$$aForschungszentrum Jülich$$b0$$kFZJ
000916476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178087$$aForschungszentrum Jülich$$b2$$kFZJ
000916476 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000916476 9141_ $$y2022
000916476 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000916476 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2021$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916476 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-16$$wger
000916476 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000916476 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000916476 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000916476 9801_ $$aFullTexts
000916476 980__ $$ajournal
000916476 980__ $$aVDB
000916476 980__ $$aUNRESTRICTED
000916476 980__ $$aI:(DE-Juel1)IEK-8-20101013
000916476 981__ $$aI:(DE-Juel1)ICE-3-20101013