001     916492
005     20240712101018.0
024 7 _ |a 10.1021/acs.est.1c07121
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a 2128/33738
|2 Handle
024 7 _ |a 35579536
|2 pmid
024 7 _ |a WOS:000815803000001
|2 WOS
037 _ _ |a FZJ-2022-06282
082 _ _ |a 333.7
100 1 _ |a Stockwell, Chelsea E.
|0 0000-0003-3462-2126
|b 0
|e Corresponding author
245 _ _ |a Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires
260 _ _ |a Columbus, Ohio
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674541650_28604
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ–1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bela, Megan M.
|0 0000-0002-3998-9990
|b 1
700 1 _ |a Coggon, Matthew M.
|0 0000-0002-5763-1925
|b 2
700 1 _ |a Gkatzelis, Georgios
|0 P:(DE-Juel1)184937
|b 3
|u fzj
700 1 _ |a Wiggins, Elizabeth
|0 0000-0003-1559-4502
|b 4
700 1 _ |a Gargulinski, Emily M.
|0 0000-0002-3949-6627
|b 5
700 1 _ |a Shingler, Taylor
|0 0000-0003-4596-1027
|b 6
700 1 _ |a Fenn, Marta
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Griffin, Debora
|0 0000-0002-4849-9125
|b 8
700 1 _ |a Holmes, Christopher D.
|0 0000-0002-2727-0954
|b 9
700 1 _ |a Ye, Xinxin
|0 0000-0001-8558-1294
|b 10
700 1 _ |a Saide, Pablo E.
|0 0000-0002-3879-7962
|b 11
700 1 _ |a Bourgeois, Ilann
|0 0000-0002-2875-1258
|b 12
700 1 _ |a Peischl, Jeff
|0 0000-0002-9320-7101
|b 13
700 1 _ |a Womack, Caroline C.
|0 0000-0002-7101-9054
|b 14
700 1 _ |a Washenfelder, Rebecca A.
|0 0000-0002-8106-3702
|b 15
700 1 _ |a Veres, Patrick R.
|0 0000-0001-7539-353X
|b 16
700 1 _ |a Neuman, J. Andrew
|0 0000-0002-3986-1727
|b 17
700 1 _ |a Gilman, Jessica B.
|0 0000-0002-7899-9948
|b 18
700 1 _ |a Lamplugh, Aaron
|0 0000-0002-5131-7070
|b 19
700 1 _ |a Schwantes, Rebecca H.
|0 0000-0002-7095-3718
|b 20
700 1 _ |a McKeen, Stuart A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wisthaler, Armin
|0 0000-0001-5050-3018
|b 22
700 1 _ |a Piel, Felix
|0 0000-0002-8191-8029
|b 23
700 1 _ |a Guo, Hongyu
|0 0000-0003-0487-3610
|b 24
700 1 _ |a Campuzano-Jost, Pedro
|0 0000-0003-3930-010X
|b 25
700 1 _ |a Jimenez, Jose L.
|0 0000-0001-6203-1847
|b 26
700 1 _ |a Fried, Alan
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Hanisco, Thomas F.
|0 0000-0001-9434-8507
|b 28
700 1 _ |a Huey, Lewis Gregory
|0 0000-0002-0518-7690
|b 29
700 1 _ |a Perring, Anne
|0 0000-0003-2231-7503
|b 30
700 1 _ |a Katich, Joseph M.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Diskin, Glenn S.
|0 0000-0002-3617-0269
|b 32
700 1 _ |a Nowak, John B.
|0 0000-0002-5697-9807
|b 33
700 1 _ |a Bui, T. Paul
|0 0000-0001-9189-0405
|b 34
700 1 _ |a Halliday, Hannah S.
|0 0000-0001-9499-9836
|b 35
700 1 _ |a DiGangi, Joshua P.
|0 0000-0002-6764-8624
|b 36
700 1 _ |a Pereira, Gabriel
|0 0000-0002-2093-9942
|b 37
700 1 _ |a James, Eric P.
|0 0000-0002-6507-4997
|b 38
700 1 _ |a Ahmadov, Ravan
|0 0000-0002-6996-7071
|b 39
700 1 _ |a McLinden, Chris A.
|0 0000-0001-5054-1380
|b 40
700 1 _ |a Soja, Amber J.
|0 0000-0001-8637-3040
|b 41
700 1 _ |a Moore, Richard H.
|0 0000-0003-2911-4469
|b 42
700 1 _ |a Hair, Johnathan W.
|0 0000-0002-9672-1237
|b 43
700 1 _ |a Warneke, Carsten
|0 0000-0003-3811-8496
|b 44
773 _ _ |a 10.1021/acs.est.1c07121
|g Vol. 56, no. 12, p. 7564 - 7577
|0 PERI:(DE-600)1465132-4
|n 12
|p 7564 - 7577
|t Environmental science & technology
|v 56
|y 2022
|x 0013-936X
856 4 _ |u https://juser.fz-juelich.de/record/916492/files/acs.est.1c07121-1.pdf
|y Restricted
856 4 _ |y Published on 2022-05-17. Available in OpenAccess from 2023-05-17.
|u https://juser.fz-juelich.de/record/916492/files/Stockwell_ES%26T.pdf
909 C O |o oai:juser.fz-juelich.de:916492
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184937
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-22
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ENVIRON SCI TECHNOL : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21