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Abstract. Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles 46 

that have important impacts on air quality and climate. Emissions that feed atmospheric models 47 

are estimated using burned area and fire radiative power (FRP) methods that rely on satellite 48 

products. These approaches show wide variability, have large uncertainties, and their accuracy is 49 

challenging to evaluate due to limited aircraft and ground measurements. Here we present a novel 50 

method to estimate fire plume-integrated total carbon and speciated emission rates using a unique 51 

combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon 52 
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constituents. We show strong agreement between these aircraft-derived emission rates of total 53 

carbon and a detailed burned area-based inventory that distributes carbon emissions in time using 54 

Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope 55 

= 1.33 ± 0.04, r2 = 0.93). Other commonly used inventories strongly correlate with aircraft-derived 56 

emissions, but have wide-ranging over- and under-predictions. A strong correlation is found 57 

between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric 58 

Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope 59 

= 0.99 ± 0.18; bias = 28.5%). We report smoke emission coefficients (g MJ-1) for many compounds 60 

including several previously unreported species. Smoke emission coefficients provide direct 61 

estimations of compound-specific emissions from satellite FRP observations.  62 

Introduction 63 

Biomass burning (BB) emits a complex mixture of carbon-containing gases and aerosols that play 64 

an important role in the global carbon cycle1, 2. As the frequency and severity of fire in the western 65 

U.S. continue to rise3-6, accurate emission estimates of diverse constituents including aerosols, 66 

trace gases, and total carbon from fires are critical to evaluate the local, regional, and global 67 

impacts of BB on climate, weather, and air quality7-9. BB is the second largest global source of 68 

carbon dioxide (CO2), total greenhouse gases, and trace gases, and is the largest source of primary 69 

carbonaceous particles to the atmosphere10-13. Carbon emissions released from BB are estimated 70 

to be ~20–40% of that released from fossil fuels14, 15, although there is significant interannual 71 

variability and emission estimates vary by orders of magnitude with large uncertainties16, 17.  72 

Biomass burning emissions are commonly estimated using either “bottom-up” burned area 73 

or “top-down” FRP approaches. The conventional bottom-up methodology first outlined by Seiler 74 

and Crutzen18 relies on biome-specific emission factors (EFs, grams emitted per kilogram of dry 75 
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fuel burned) for trace gases and aerosols and an estimate of the total amount of dry biomass 76 

consumed by the fire. The amount of biomass consumed is approximated from several parameters 77 

including burned area, fuel loading, and combustion completeness estimated from satellite 78 

products (hot spots, active fire counts, burn scars), derived from vegetation models19, or predicted 79 

from environmental conditions (meteorology, fuel moisture) and/or fire processes 80 

(flaming/smoldering). Inventory estimates based on these methods often show large variability 81 

driven by uncertainties in fuel consumption estimates and inconsistencies in satellite products and 82 

fuel characteristics19-24.  83 

Top-down emission estimates rely on satellite fire radiative power (FRP) retrievals of a fire 84 

event. FRP-based approaches use the rate of energy released from fires as a proxy for emissions 85 

released from fuel consumption25-29. The total amount of dry biomass consumed by a fire can be 86 

estimated directly from the temporal integration of FRP (fire radiative energy, FRE; MJ) together 87 

with a scalar referred to as a biomass conversion factor (ß; kg dry mass burned MJ-1) (Emissions 88 

[g] = β [kg MJ-1] × FRE [MJ] × EF [g kg-1]). β is derived experimentally from the linear relationship 89 

between directly measured fuel consumption and radiative energy released by a fire26, 27, 30-33 or 90 

indirectly using satellite-FRP with model emission estimates or other emission products34-36. 91 

Alternatively, FRE can be directly translated to total emissions of individual constituents using 92 

compound-specific smoke emission coefficients28, 37-40 (α; g MJ-1) (Emissions [g] = α [g MJ-1] × 93 

FRE [MJ]). FRP-based methods enable near-real time emission estimates, although because fires 94 

vary spatially, temporally, and in intensity, the spatiotemporal resolution of satellites adds 95 

uncertainty to FRP-derived products41-43. The emissions derived from both burned area (bottom-96 
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up) and FRP-based (top-down) methods can differ by an order of magnitude and are challenging 97 

to validate because of limited ground-based and in situ observations22, 40, 41, 43, 44.  98 

Emission rates (g s-1) estimated from observations typically require knowledge of the entire 99 

plume structure. Aircraft sampling of emission plumes generally only characterizes the horizontal 100 

cross section of the plume, whereas the vertical distribution of species is typically unknown or 101 

approximated. Airborne emission flux estimates computed using in situ measurements have only 102 

been done within the planetary boundary layer (PBL), where emissions are assumed to be 103 

uniformly mixed or the vertical structure of a plume is probed with multiple transects45, 46. In the 104 

free troposphere, where many fire plumes are transported, it is challenging to estimate emission 105 

fluxes using in situ measurements, since the vertical distribution of pollutants is typically 106 

unmeasured. This study outlines a new approach to derive fire plume emission rates using the 107 

combination of in situ measurements and lidar to resolve the horizontal and vertical distribution of 108 

carbon in fire plumes.  109 

This method is used to independently evaluate total carbon emissions derived from burned 110 

area and FRP-based inventories, as well as carbon monoxide (CO) emission rates derived from the 111 

TROPOspheric Monitor Instrument (TROPOMI) for western United States wildland fires. Nine 112 

BB inventories are evaluated, including four burned area approaches, three traditional FRP-based 113 

datasets, and two experimental products (in development) also based on FRP. Emission rates are 114 

also derived for a variety of co-emitted compounds and are used to estimate smoke emission 115 

coefficients using the relationship between total integrated emissions and integrated FRP for each 116 

plume cross section. Emissions of several species are derived from aircraft measurements for the 117 

first time and are expected to be representative of temperate forest ecosystems. The coefficients 118 

can be applied in operational models that estimate primary emissions from satellite observations 119 
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of fire energy in order to predict ozone and secondary aerosol formation in temperate forest 120 

ecosystems or scaled for other ecosystems using appropriate emission factor ratios. 121 

Materials and Methods 122 

Campaign and measurement details. This study utilizes measurements collected aboard the 123 

NASA DC-8 aircraft during the western portion of the Fire Influence on Regional to Global 124 

Environments and Air Quality (FIREX-AQ) field campaign (Supporting Information (SI) Tables 125 

S1 and S2) that spanned thirteen flights sampling 10 distinct fires. This includes a suite of 126 

instrumentation quantifying gaseous and aerosol compounds, and a nadir/zenith directed Airborne 127 

Differential Absorption and High Spectral Resolution Lidar (DIAL-HSRL) to characterize the 128 

vertical distribution of aerosols and their optical properties (SI section S1.2). Total carbon is 129 

calculated as the sum of all background-subtracted carbon-containing gaseous and aerosol species 130 

measured in situ at one second time resolution (Eqn. S1). The three main carbon-containing 131 

emissions from fire (CO2, CO, and CH4) typically account for ~97–98% of the total carbon 132 

emitted11, 47, and for the western U.S. wildfires sampled during FIREX-AQ, the average particulate 133 

contribution was less than 1%48. Additional information including fire selection, transect inclusion, 134 

and smoke age estimates is included in the SI. 135 

In situ aircraft-derived emissions. Vertical total carbon concentration profiles are generated for 136 

each transverse plume crossing by scaling lidar spatial distributions of aerosol extinction (Mm-1, 137 

532 nm) to total carbon (ppbC) using an enhancement ratio of total carbon relative to in situ aerosol 138 

extinction at 532 nm measured aboard the aircraft. Missing data and gaps in the HSRL vertical 139 

extinction profiles resulted when plumes were too optically thick for the laser to fully penetrate, 140 

or when data were masked due to surface feedback or cloud coverage. Data gaps in the scaled 141 

carbon profiles are interpolated using a spatial interpolation method (Voronoi natural neighbor; 142 
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Figure S1). An example downwind flight track colored by in situ carbon is shown in Figure 1A 143 

together with the derived vertical carbon distributions (Figure 1B) shown for the same transect 144 

plume crossings.  145 

The carbon emission rate (gC s-1) is calculated for each HSRL pixel from carbon mass 146 

concentration (gC m-3), pixel area (m2), and horizontal wind speed (m s-1) (Eqns. S2-S3). The total 147 

carbon emission rate (gC s-1) through each plume cross section is estimated by summing vertically 148 

through the lidar sampling heights and horizontally across the width of the plume following Eqn. 149 

1: 150 

Carbon Emission  Rate (gC s−1)

=   ∑ ∑ Conc.
𝑡exit

𝑡entry

z=20km

z=surface 
 (gC m−3) × Area (m2) × Wind speed (m s−1) 

(1) 

  

where z is the altitude from the surface to 20 km above sea level and t is the aircraft sampling time 151 

from plume entry (tentry) to exit (texit). 152 

The error in scaling extinction to total carbon is estimated by comparing the scaled total 153 

carbon derived by HSRL measurements at the aircraft flight altitude with the sum of the onboard 154 

aircraft carbon measurements (average error across all fires ~38%). The error in scaling extinction 155 

to total carbon is propagated together with the uncertainty in the wind and results in a total 156 

measurement uncertainty that ranges by fire from 21 to 63%. Interpolating carbon concentrations 157 

through the plume center during lidar saturation likely results in some underestimation that may 158 

offset underestimation of onboard extinction measurements caused by evaporative inlet aerosol 159 

losses49 that would bias scaled total carbon estimates high. A full description of these calculations, 160 

measurement descriptions, and uncertainties are provided in SI section S1.3.   161 

The mass emission rates of individual species are determined as the product of the carbon 162 

emission rate and the transect-determined enhancement ratio of the individual constituent relative 163 
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to total carbon a. The total plume-integrated mass for nearly 90 compounds are derived from the 164 

compound-specific mass emission rate and total transect sampling time (Eqn. S5).  165 

Biomass burning emission inventories. Nine biomass burning emission inventories are 166 

compared to the in situ observations of total carbon, including four burned area-based approaches: 167 

the campaign-specific high-resolution Fuel2Fire inventory (developed for this work and described 168 

further below), Global Fire Emissions Database (GFEDv4.1s)24, the Brazilian Biomass Burning 169 

Emission Model updated to include emission factors from Andreae50 (3BEM_A19), and the Fire 170 

INventory from NCAR (FINN v2.3)51, 52; three traditional FRP-based datasets: Global Fire 171 

Assimilation System (GFAS1.0)35, Quick Fire Emissions Dataset (QFED2.4)53, and Fire 172 

Energetics and Emissions Research (FEER)37; and also two experimental products (not fully 173 

operational at time of retrieval) based on FRP: High-Resolution Rapid Refresh (HRRR-Smoke 174 

v3)54 and The Blended Global Biomass Burning Emissions Product (GBBEPx v3)55. Detailed 175 

information including spatial resolution, emission factor database references, and brief 176 

methodology descriptions are included in SI section S2.  177 

The inventories provide daily biomass burning emissions summed for all inventory grid 178 

cells that at least partially overlap a circle with a radius of 0.25 degrees centered at the mean 179 

latitude and longitude of the United States Geospatial Multi-Agency Coordination (GeoMAC) fire 180 

perimeters hosted by the National Interagency Fire Center (https://data-181 

nifc.opendata.arcgis.com/datasets/historic-perimeters-2019)56. Overlap is determined by 182 

identifying grid cells whose centers are within a radius of the GeoMAC fire perimeter mean 183 

latitude and longitude of 0.25 degrees plus one half of the diagonal length of the inventory grid 184 

cell (Eqns. S6 and S7). 185 
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TROPOspheric Monitoring Instrument (TROPOMI) CO emission estimates. TROPOMI 186 

orbits the western U.S. in a sun-synchronous orbit with equatorial crossing at 13:30 local time (LT) 187 

and retrieves total vertical column densities (VCDs) of CO. A cross-sectional flux method was 188 

applied to the CO VCDs to derive emission rates from single-orbit satellite observations, following 189 

the approach described by Adams et al.57 and Griffin et al.58. Briefly, the VCDs are wind-rotated 190 

about the center of the fire location to obtain an upwind/downwind domain and binned into a grid 191 

(4 km × 4 km) that is background corrected using upwind CO observations. All grids within the 192 

fire plume boundary are integrated and an emission rate is estimated as the product of the mass 193 

enhancement and the wind speed. The total uncertainty of the CO emission estimates is 194 

approximately 40%. A detailed description of the TROPOMI CO emission method is included in 195 

SI section S3.2.  196 

Results: Emissions validation and evaluation 197 

Comparison of aircraft measurements with the FIREX-AQ Fuel2Fire inventory. The 198 

estimation of emission rates using the methods outlined above are only possible with a 199 

combination of remote sensing and in situ measurements on the aircraft. The derived carbon 200 

emission rates are compared to a comprehensive, burned area-based carbon emission inventory 201 

(Fuel2Fire). The Fuel2Fire inventory emissions are calculated using newly optimized methods 202 

specifically for the fires sampled during FIREX-AQ. Briefly, Fuel2Fire estimates the amount of 203 

fuel burned using active fire detections within a refined GeoMAC fire perimeter together with a 204 

high-resolution land classification system for fuel loading and fuel consumption determined from 205 

daily fire weather severity. By assuming a carbon fuel fraction, detailed daily carbon emission 206 

rates are estimated for each fire and are distributed temporally using FRP measured by the 207 

Geostationary Operational Environmental Satellite (GOES) (see SI section S3.1). Figure 2A shows 208 
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the 1 Hz Fuel2Fire carbon emission rates for the Williams Flats fire (August 3rd, 2019) along with 209 

those based on airborne measurements (tonnes of carbon per second; tC s-1). To align the aircraft 210 

measurements to the Fuel2Fire emissions, the smoke age (SI section S1.5) is used to estimate the 211 

original time of emission. The temporal variability prescribed to Fuel2Fire using geostationary 212 

satellite FRP retrievals is captured well by the aircraft measurements for most transects. For other 213 

fires, the magnitude of emissions is similar between methods, while individual data points show 214 

large differences (Figure 2B), likely due to uncertainties in estimated smoke ages and uncertainties 215 

in the GOES FRP retrievals (cloud/smoke obscuration, saturation, scan angle) used to distribute 216 

emissions. Even with these outliers and emission rate uncertainties that range from 21 to 63% by 217 

fire (SI section S1.3), the 15 min smoothed Fuel2Fire and aircraft measurements show agreement 218 

using a reduced major axis regression (slope = 1.33 ± 0.04, r2 = 0.92).  219 

The described method captures plume heterogeneity and does not require the plume to be 220 

mostly decoupled from the ground, which is necessary for airborne solar occultation flux 221 

measurements40, 59. The use of lidar also reduces artifacts related to sampling plume cross sections 222 

at altitudes that are not centered within the plume; however, the method assumes that all smoke 223 

sampled in a vertical cross section was emitted simultaneously and transported/aged together, 224 

which simplifies actual plume dynamics60. Even with these assumptions, the violin plots in Figure 225 

2B and each fire time series in Figure S2 show this method and emission estimates using 226 

Fuels2Fire agree in magnitude, show reasonable temporal variations in most sampled plumes, and 227 

is appropriate for estimating emission rates from plumes that can be completely (or mostly) 228 
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penetrated by the lidar laser. In the following sections, these estimates are compared with satellite 229 

measurements of CO and then used to evaluate the accuracy of several BB emission inventories. 230 

Comparison of aircraft measurements with TROPOMI satellite measurements. It is critical 231 

to validate satellite-derived BB emissions since satellite sensors have daily global coverage, and 232 

thus are essential for operational air quality and smoke models, whereas airborne and ground 233 

observations are infrequent and spatially limited. To date, TROPOMI CO retrievals have been 234 

validated by comparisons to ground-based, aircraft, and satellite remote-sensing measurements 235 

and model-simulated CO61-65. Previously, nitrogen oxides (NOx)
58, 66 and nitrous acid (HONO)67 236 

biomass burning emissions have been derived from TROPOMI observations. This study is the first 237 

to evaluate TROPOMI-derived CO emissions from wildland fires by aircraft measurements. Here, 238 

fire-specific single-orbit TROPOMI CO emission estimates (SI section S3.2) near the fire source 239 

(within 20 km) are compared to the FIREX-AQ aircraft CO emission estimates. Aircraft-based 240 

plume-integrated CO emission rates are derived by scaling total carbon emission rates using the 241 

enhancement ratio of CO to total carbon for each transect (SI Eqn. S5). The aircraft-derived CO 242 

emission rates are averaged to include transects of the plume emitted within 90 minutes of the 243 

satellite orbit to have enough plumes to compare with and to account for uncertainties in the 244 

emission time. Figure 3 presents comparisons of TROPOMI CO emissions and aircraft-based 245 

estimates (tonnes of CO per hour, tCO h-1) for the five fires measured during FIREX-AQ with 246 

coincident emission windows. The satellite shows agreement with the aircraft CO emission rate 247 

with a slope = 0.99. The average of the relative differences (bias=[TROPOMI-Aircraft]/Aircraft) 248 

was 28.5 ± 9.4 % (range ~2–59%), while the absolute differences range from 16 to 86 tCO h-1. 249 

The horizontal bars show the temporal variability in the aircraft estimates within 90 min of the 250 

overpass that cannot be captured by the satellite, which shows that the aircraft measurements have 251 
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a finer spatial and temporal resolution than the satellite. The nitrogen oxide (NO) and nitrogen 252 

dioxide (NO2) fluxes estimated by this method were also used to evaluate TROPOMI NOx 253 

emission estimate methods as outlined by Griffin et al.58. Overall, the comparison of the 254 

measurements with Fuel2Fire gives very high confidence in the accuracy of the total carbon 255 

emission estimates from the DC-8 during FIREX-AQ and validates TROPOMI satellite-derived 256 

CO emissions. 257 

Comparison with biomass burning emission inventories. Conventional BB emissions 258 

inventories use methods based on either burned area or satellite FRP and often incorporate other 259 

satellite data products such as aerosol optical depth25. The magnitude and distribution of BB 260 

emissions based on these methods vary widely and the availability of aircraft measurements to 261 

evaluate inventory accuracy and uncertainty is very limited. To compare the aircraft measurements 262 

with commonly used fire emission inventories, the daily total carbon inventory emissions are 263 

distributed hourly using fire-day specific probability distributions estimated from GOES-FRP 264 

diurnal patterns68 (Figure S3) to isolate differences not related to inventory-applied fire diurnal 265 

cycles. The GOES diurnals indicate limited nocturnal fire activity and therefore emission estimates 266 

from all inventories are weighted towards the daytime. Total carbon emissions are calculated from 267 

measurements for the Williams Flats fire on three separate days, and these aircraft measurements 268 

are averaged to the hour to align with the inventories. The unweighted orthogonal distance 269 

regressions between the aircraft- and satellite-based estimates are shown in Figure 4A. Nine BB 270 

inventories including four burned area datasets (Fuel2Fire, GFED, 3BEM_A19, FINN), three 271 

FRP-based inventories (GFAS, QFED, and FEER), and two experimental products also based on 272 

FRP (HRRR-Smoke, GBBEPx)22 are shown (SI section S2). The various inventories have a wide 273 

range of emission estimates for the Williams Flats fire; for example, 3BEM_A19 is a factor of ten 274 
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lower and HRRR-Smoke a factor of three higher than the aircraft measurements, while the average 275 

of all inventory datasets lies near the one-to-one line (slope = 1.2). The Fuel2Fire and GFED 276 

inventory had the best overall agreement (slopes = 1.3 and 1.1, respectively), while the remaining 277 

FRP-based inventories had strong correlations, but are approximately a factor of 2 lower. 278 

The magnitude of emissions on August 7th is 2–4 times larger than August 3rd, and the 279 

linear fits are driven by the higher emission day. The measurements and inventories for each plume 280 

crossing are averaged for each sampling day and Figure 4B shows the boxplot summaries (the 281 

median, 75th, and 25th quartiles or average ± standard deviation where n = 2). Emissions are the 282 

highest and most variable for the two experimental inventories, HRRR-Smoke and GBBEPx, 283 

while the remaining FRP-based inventories had better agreement and are within the 25th/75th 284 

quartile range of the aircraft measurements for both August 3rd and 7th, though below the average 285 

on the 7th. The emissions are lowest for all three of the burned area inventories on August 3rd 286 

(GFED, FINN, 3BEM_A19). On August 6th, all inventories are lower, while on the other days the 287 

inventory average agrees better with the measurements. Aircraft sampling on August 6th spanned 288 

only two hours (n=2) and the emission time was earlier than the highest FRP on that day, which 289 

may explain the low bias in all inventory emissions derived from the GOES diurnal emissions 290 

relative to aircraft measurements. This demonstrates that the prescribed fire diurnal cycle from 291 

GOES observations might not fully capture the fire diurnal cycle variability, especially during 292 

lower consumption periods. Many models use a fixed fire diurnal cycle for each day that can 293 

inaccurately distribute emissions69 or weight emissions towards daytime hours70, though these 294 

results show that even observationally-derived fire diurnal patterns can miss periods of emissions. 295 

Every inventory except for the high-resolution Fuel2Fire inventory shows reduced daily 296 

emissions from August 7th to the pyrocumulonimbus event on August 8th (SI Figure S4, solid 297 
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lines). The primary difference between Fuel2Fire and the other inventories is that Fuel2Fire 298 

assumes residual emissions from the area burned on the previous day; therefore, those days with 299 

an intense preceding fire day will have higher relative emissions compared to other inventories. 300 

Additionally, satellite products can severely underpredict emissions during large fire events due to 301 

dense plumes concealing FRP or hotspots and need to consider fire behavior and changes in fuel 302 

consumption.  303 

Air quality forecast model predictions use the most recent satellite detections and typically 304 

assume persistence into the forecasting window69, and therefore most forecasts (Figure S4, dashed 305 

lines) show increasing emissions from August 7th to August 8th. Forecasted total carbon emissions 306 

for the Williams Flats fire, estimated from forecast carbon monoxide emissions with FIREX-AQ 307 

derived CO emission factors, are compared to the inventory estimates in Figure S4. The forecasted 308 

emissions vary by a factor of 35 and generally underpredict total carbon relative to the Fuel2Fire 309 

inventory for most days, except for August 9th when Fuel2Fire indicates that the fire was subsiding 310 

while forecasted persistence predict continued high emissions. Ye et al.69 showed that 311 

experimental models that ingested QFED emissions tend to have carbonaceous aerosol forecasted 312 

emissions that are overpredicted relative to the Fuel2Fire inventory. One potential explanation for 313 

these discrepancies is that Ye et al.69 assumes a fixed percentage conversion from the Fuel2Fire 314 

total carbon to carbonaceous aerosol that could bias the Fuel2Fire inventory low. Small 315 

adjustments to this conversion factor can result in large differences in the predicted total aerosol 316 

emissions. Additionally, the compound-specific emission factors used to estimate emissions vary 317 
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by model, and therefore the relative differences between forecasted emissions can vary by 318 

compound or conversion method.  319 

The Williams Flats fire was the largest and most sampled fire during FIREX-AQ. The 320 

hourly comparisons for the other sampled western U.S. wildfires of various sizes are shown in 321 

Figure 5 with logarithmically-spaced histograms of the ratio of inventory to aircraft measurements. 322 

Only the FEER inventory missed estimates within the designated perimeter, and those data are 323 

included as zero emissions (n = 10). Inventory estimates are sensitive to the selected perimeter and 324 

defined overlap. For instance, GFED emission estimates, restricted to only include grid cells 325 

completely contained within a 0.25° radius circle of the fire location (no partial overlap), are zero 326 

across all sampled fires. The defined perimeter and overlap are described in SI section S2.1 and 327 

aim to capture each fire’s total emissions without including any neighboring fires.  328 

The Fuel2Fire and FINN inventories have more Gaussian distributions around the one-to-329 

one ratio, while several traditional FRP-based inventories (GFAS, QFED, FEER) agree with 330 

geometric means ranging from 0.73 - 1.16, but have a larger spread in emissions (geometric 331 

standard deviation > 3.5). Generally, the GFED inventory underpredicts emissions (0.45 ± 3.60), 332 

but has less fire-to-fire variability than the 3BEM_A19 burned area inventory (0.19 ± 9.71), whose 333 

spread in emissions were driven by overpredictions during the Tucker and North Hills fires. The 334 

latest version of GFED uses the Moderate Resolution Imaging Spectroradiometer (MODIS) 335 

burned area product together with additional algorithms in order to capture small fires, however, 336 

there are large uncertainties even with improvements71, 72. The recent version of FINN (v2.3) 337 

applies updated burned area estimates from MODIS plus the Visible Infrared Imaging Radiometer 338 

Suite (VIIRS) fire detects and generally has higher emissions than its predecessor for temperate 339 

North America52, though it continues to underpredict emissions relative to the aircraft (0.65 ± 340 
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3.45). These advances in burned area estimates reduce some of the low bias frequently observed 341 

for these inventory types in some regions22. In general, these three burned area inventories more 342 

frequently underpredict emissions relative to the aircraft, yet can agree well on a per-fire basis 343 

(e.g., the Williams Flats fire). HRRR-Smoke and GBBEPx have the highest overall emissions and 344 

significant variability. As an example, GBBEPx agrees well for the Williams Flats fire (Figure 345 

4A), but overpredicts relative to aircraft-derived total carbon by a factor of 4 for the Sheridan fire. 346 

A potential reason for the difference could be the inventory-assigned (QFED) land-cover 347 

classification, since the Sheridan fire on August 16th is categorized as a mix of savanna and 348 

extratropical forest, while the Williams Flats fire is exclusively extratropical forest. 349 

Estimated values of the energy released from burning fuel (biomass conversion factor, β) 350 

are used in several FRP-based approaches to estimate the amount of dry mass burned, although β 351 

values vary by detection method and have been scaled to match burned area generated emissions 352 

for several fuel types35. GFAS, QFED, and FEER had similar distributions in emissions, and 353 

agreement with field observations would potentially improve with updated biomass 354 

conversion/smoke emission coefficients or by implementing higher temporal and spatial resolution 355 

satellite FRP retrievals (e.g., GOES or hybrid/fused FRP products). 356 

Results: Speciated emissions 357 

Smoke emission coefficients. FRP-based emission estimates for all compounds in smoke rely on 358 

either a biomass conversion factor (β; kg dry mass burned MJ-1) together with biome-specific 359 

emission factors (EFs) or compound-specific (X) smoke emission coefficients (α, gX MJ-1). Smoke 360 
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emission coefficients are empirically derived from laboratory measurements28, satellite 361 

retrievals38, 42, 73, and/or chemical transport models74.  362 

Each measured carbon species is integrated over the time needed to complete an individual 363 

plume transect to obtain a total mass for each transect. Emission coefficients (α-values) are then 364 

calculated from the total mass for each transect against the transect-specific FRE (time-integrated 365 

FRP) as shown in Figure 6A for total carbon and Figure 6B for CO. The smoke emission 366 

coefficients for total carbon (α = 105.9 ± 10.9 g MJ-1), CO (α = 21.4 ± 2.2 g MJ-1), and many other 367 

previously-unmeasured compounds are listed in SI Table S3 for temperate forest fuels. Secondary 368 

products that are not expected to be primarily emitted are excluded (e.g., ozone, 369 

peroxyacylnitrates, HNO3). These are the first reported emission coefficients using in situ aircraft 370 

measurements for large-scale wildfires. Additional details including descriptions of excluded fires 371 

and transects are detailed in SI section S1.6. 372 

Figure 6B also shows the TROPOMI-derived total CO mass (red) versus GOES-integrated 373 

FRP has a similar CO α-value (23.9 ± 7.0 g MJ-1) as those derived using aircraft measurements 374 

(21.4 g MJ-1). The TROPOMI value is comparable to the value derived for the continental United 375 

States (CONUS) using TROPOMI CO total mass with GOES FRP from 41 fires (29.92 g MJ-1)42 376 

and a laboratory-derived value (33.71 g MJ-1)28, further validating the aircraft method. Previous 377 

CO emission coefficients calculated using satellite particulate matter emission coefficients scaled 378 

to CO using emissions factors are much higher (105–192 g MJ-1) and lead to higher emission 379 

estimates25, 37, 75.  380 

Figure 6B also shows the TROPOMI CO estimates versus FRP from MODIS Aqua 381 

retrievals for western U.S. fires sampled during FIREX-AQ and another western U.S. wildfire 382 

campaign (WE-CAN; Western Wildfires Experiment for Cloud Chemistry, Aerosol Absorption, 383 
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and Nitrogen76; SI S3.2) assuming a 40% uncertainty in both (blue, α value = 31.5 ± 6.7 g CO MJ-384 

1, r2 = 0.72). The overpass times of the two satellites are not always coincident, though their orbits 385 

are generally within 2 h. The relative difference between the satellite FRP-products (MODIS vs. 386 

GOES) was only ~21%. Using the CO α-value to predict WE-CAN emissions shows agreement 387 

with TROPOMI (~55% difference on average), and therefore using these α-values in GOES or 388 

MODIS FRP-based operational models is representative for temperate forest ecosystems, although 389 

differences for individual fires will exist. The methods outlined in this study could be used to 390 

derive α-values for other ecosystems. Alternatively, the temperate forest values could be scaled by 391 

multiplying by the ratio of ecosystem-specific emission factors for each selected constituent (X) 392 

taken from biomass burning emission databases (i.e., EFX, ecosystem /EFX, temperate ecosystem)11, 50. 393 

With the method described here, the biomass conversion factor, which represents the 394 

amount of fuel burned per energy released, cannot be measured directly since the amount of fuel 395 

consumed is unmeasured. The factor was instead calculated as the average of the ratios of smoke 396 

emission coefficients to the campaign-wide average EFs for all species measured by the DC-8 as 397 

reported by Gkatzelis et al.48. The resulting biomass conversion factor was 0.21 ± 0.10 kg MJ-1, 398 

which is lower than laboratory/controlled fires (0.368–0.453 kg MJ-1)26, 28, 77 or satellite/model 399 

emission derived values for extratropical forest/temperate fuels (0.261–0.49 kg MJ-1)32, 35. β-values 400 

vary widely among satellite-based studies by vegetation-type or by FRP-product (0.13–12 kg MJ-401 

1)26, 28, 32, 36, 38, 41, 43, 77-79, which again highlights the need for aircraft measurements such as those 402 

flown during FIREX-AQ for other ecosystems. 403 

The FRP / total reactive nitrogen oxides (NOy) relationship. The outlined methods have 404 

focused on carbon emissions, though quantifying both carbon-containing volatile organic 405 

compounds (VOCs) and nitrogen oxides (NOx) and other reactive nitrogen species is critical for 406 
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understanding the air quality and climate impacts of ozone and secondary organic aerosol (SOA) 407 

formation downwind of wildfires80. Total reactive nitrogen oxides (NOy) is a reasonably-408 

conserved tracer in smoke plumes81 and the ratio of VOCs to NOy can be used as a proxy for 409 

downwind ozone formation from wildfires as the initial mix of emissions controls NOx loss 410 

pathways, which will determine the chemical regimes (NOx-sensitive or VOC-sensitive) of the 411 

downwind plume80. Gkatzelis et al.48 demonstrate that VOCs from fresh plumes can be estimated 412 

using direct CO measurements near the fire source while the NOy relationship with CO is less 413 

correlated across all fires sampled (r2 = 0.75) . Figure 6C shows that total transect integrated NOy 414 

(g) has a strong relationship with integrated FRP (r2 = 0.91) for the temperate fuels, and because 415 

NOy is conserved in the absence of wet or dry deposition, the correlations hold for both fresh and 416 

aged plumes (colored by smoke age). The initial concentrations of VOCs can then be estimated 417 

from parameterizations of satellite-measured CO (TROPOMI or Cross-track Infrared Sounder 418 

[CrIS]), while total NOy can be estimated from integrated FRP satellite retrievals 419 

(MODIS/GOES/VIIRS) using the predicted emission coefficient for the temperate ecosystem. 420 

More work is needed to investigate differences between ecosystems and/or burn conditions (i.e., 421 

fuel moisture, meteorology), though there were no apparent trends with modified combustion 422 

efficiency identified here. Predicting and implementing the initial concentrations of VOCs and 423 

NOy from satellite products (CO and FRP) into models might enable more accurate and simplified 424 

estimates of downwind ozone and SOA formation without the need for direct field measurements.  425 

Discussion  426 

The wide variability and large uncertainty in biomass burning emission estimates by inventories 427 

complicate the interpretation of fire impacts on air quality and climate. Evaluating the accuracy of 428 

commonly used biomass burning emission inventories has traditionally been challenging due to 429 
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limited in situ aircraft or ground-based measurements. This study presents a new method of 430 

calculating emission rates using in situ and remote-sensing airborne measurements, which were 431 

compared to various inventories. The high-resolution burned area-based estimates generated for 432 

FIREX-AQ (Fuel2Fire) accurately predict western wildland fire emissions, yet are very time 433 

intensive to generate. Emissions from other traditional inventories vary greatly, resulting in both 434 

over- and under-predictions of emissions when compared to the aircraft-derived method. We 435 

derive in situ smoke emission coefficients from wildfire plumes using lidar to determine the 436 

plume’s spatial extent. The aircraft-derived smoke emission coefficients can replace emission 437 

factors to estimate fire emissions directly from satellite FRP, bypassing fuel burned estimates. The 438 

outlined method can be used to derive coefficients for other ecosystems directly or the presented 439 

values can be scaled using the appropriate ratio of EFs. In situ aircraft measurement derived 440 

emission coefficients are reported for the first time for a wide range of species and implementing 441 

these values in air quality and smoke models is expected to improve the accuracy and spatial 442 

coverage as inventories begin to utilize higher time resolution geostationary FRP retrievals.  443 
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Figures and Tables 444 
 445 

 446 
Figure 1. (A) The DC-8 flight track showing several transverse transects of the Horsefly fire plume 447 

(August 6, 2019) colored by the sum of in situ aircraft measurements of excess carbon (ppbC). (B) 448 

An example vertical profile of transect plume crossings colored using the same color scale shown 449 

in panel A. The aircraft sampling altitude above mean sea level (m) is indicated by the cyan line.   450 
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 451 
Figure 2. (A) Total carbon emission rates determined for the DC-8 aircraft transects (red) and the 452 

Fuel2Fire daily carbon burned area estimate partitioned onto a 1s time base (black) using the 453 

GOES-derived FRP diurnal pattern for the Williams Flats fire on August 3rd, 2019. (B) Violin plots 454 

showing the distribution of individual transect emission rates (black lines) taken from 15 min 455 

smoothed Fuel2Fire carbon estimates (grey) and aircraft measurements (red) at the estimated time 456 

of emission using a Gaussian kernel.   457 
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 458 
Figure 3. Correlation between TROPOMI CO and aircraft CO emission rate estimates (tCO h-1) 459 

averaged when smoke emission times were within 90 minutes of the satellite overpass (~13:30 460 

LT) for the North Hills (n=2), Shady (n=1), and Williams Flats fires on August 3rd (n=10), 6th 461 

(n=5), and 7th (n=5). The 95th confidence intervals in the slope (grey), ± standard error of aircraft 462 

data (horizontal bars), and a 40% error in the TROPOMI CO estimate58 (vertical bars) are shown. 463 

 464 
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 465 

Figure 4. (A) Orthogonal distance regression fits of inventory emissions against aircraft 466 

measurements averaged to the hour for three flights sampling the Williams Flats fire. (B) All 467 

aircraft measurements (black) and inventory emissions (colored) were binned during the aircraft 468 

sampling period (2–7 h) for the Williams Flats fire. The median, 75th, and 25th quartiles are shown, 469 

or the average ± 1 standard deviation where n = 2 (August 6th).   470 
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 471 
Figure 5. Distribution of the ratio of inventory carbon emissions to aircraft carbon measurements 472 

for hourly-averaged observations of 11 fires for Fuel2Fire (red), GBBEPx (cyan), HRRR-Smoke 473 

(orange), GFAS (green), QFED (yellow), FEER (blue), FINN (maroon), 3BEM_A19 (purple), and 474 

GFED (pink). The one-to-one ratio is shown as a dashed line. The geometric mean ± geometric 475 

standard deviation is listed for each inventory.   476 
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 477 
Figure 6. (A) Total carbon emissions (g) versus integrated fire radiative power (MJ) used to 478 

generate a smoke emission coefficient for carbon (gC MJ-1) from a York regression fit (dashed 479 

line) with the 95% confidence intervals shown (shaded grey). (B) CO emission (g) versus GOES 480 

integrated FRP for aircraft measurements (black) and TROPOMI retrievals (red). Emissions versus 481 

MODIS-Aqua integrated FRP for TROPOMI, FIREX-AQ, and WE-CAN fires are shown where 482 

available (blue) (C) NOy emission versus integrated FRP colored by smoke age.  483 
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Supporting Information. Extended experimental methods, biomass burning emissions 484 

inventory descriptions, satellite retrieval descriptions, and a summary of forecast models is 485 

included in the Supporting Information (SI) and Tables S1-S4 and Figures S1-S4.  486 
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