001     916566
005     20250129092503.0
024 7 _ |a 10.1109/TNS.2023.3274876
|2 doi
024 7 _ |a 0018-9499
|2 ISSN
024 7 _ |a 1558-1578
|2 ISSN
024 7 _ |a WOS:001116676600059
|2 WOS
037 _ _ |a FZJ-2022-06342
082 _ _ |a 620
100 1 _ |a Florczak, Josua
|0 P:(DE-Juel1)178033
|b 0
|e Corresponding author
245 _ _ |a Calibration of the deposited energy in CMOS imagers for particle detection on nanosatellite
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692963124_31910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Post-Print hinzugefügt
520 _ _ |a Commercial off-the-shelf (COTS) CMOS sensors are increasingly used in scientific applications on nanosatellites. Applying a software-based approach and in addition to their image acquisitions tasks, these CMOS sensors can be used to detect ionizing particles to improve the fault tolerance of imaging instruments on nanosatellites without the need for additional hardware. A challenge in using COTS components for this approach is that essential radiation test data and important parameters such as the thickness of the sensitive epitaxial layer are typically not available. With a simplified calibration approach, we determine the epitaxial layer thickness and calibrate the deposited energy sensitivity with minimal measurement time and steps and minor requirements on the test facility. A forward model for particle track length determination with an increased angle scattering of incident protons is used to handle stronger parameter uncertainties of the test setup. It is shown that the currently used CMOS sensor (HWK1910A) is a suitable candidate for a radiation monitor, based on the determined epitaxial layer thickness and the deposited energy calibration factor, in combination with the in-orbit mission data. This enables capabilities for more individual protection measures in case of unexpected radiation environments.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
536 _ _ |a RADNEXT - RADiation facility Network for the EXploration of effects for indusTry and research (101008126)
|0 G:(EU-Grant)101008126
|c 101008126
|f H2020-INFRAIA-2020-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 1
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 2
700 1 _ |a Rongen, Heinz
|0 P:(DE-Juel1)133931
|b 3
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 4
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 5
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 6
700 1 _ |a Rienäcker, Ingo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hajdas, Wojciech
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1109/TNS.2023.3274876
|g p. 1 - 1
|0 PERI:(DE-600)2025398-9
|n 8
|p 1966 - 1972
|t IEEE transactions on nuclear science
|v 70
|y 2023
|x 0018-9499
856 4 _ |u https://juser.fz-juelich.de/record/916566/files/Calibration%20of%20the%20deposited%20energy%20in%20CMOS%20imagers%20for%20particle%20detection%20on%20nanosatellites.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:916566
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133931
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142562
910 1 _ |a Paul Scherrer Institut Villingen Switzerland
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Paul Scherrer Institut Villigen Schwitzerland
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2023
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T NUCL SCI : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21