000916581 001__ 916581
000916581 005__ 20240712113238.0
000916581 020__ $$a978-3-95806-670-0
000916581 0247_ $$2Handle$$a2128/33749
000916581 037__ $$aFZJ-2022-06357
000916581 1001_ $$0P:(DE-Juel1)175127$$aXia, Lu$$b0$$eCorresponding author
000916581 245__ $$aNanostructures of Transition Metal Sulfides for Anion Exchange Membrane Water Electrolysis$$f - 2022-09-28
000916581 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek Verlag$$c2022
000916581 300__ $$a161
000916581 3367_ $$2DataCite$$aOutput Types/Dissertation
000916581 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000916581 3367_ $$2ORCID$$aDISSERTATION
000916581 3367_ $$2BibTeX$$aPHDTHESIS
000916581 3367_ $$02$$2EndNote$$aThesis
000916581 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1674557818_28768
000916581 3367_ $$2DRIVER$$adoctoralThesis
000916581 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v597
000916581 502__ $$aDissertation, RWTH Aachen University, 2022$$bDissertation$$cRWTH Aachen University$$d2022
000916581 520__ $$aAnion exchange membrane (AEM) water electrolysis is an emerging technology for potentially large-scale hydrogen generation owing to the low cost of catalysts based on transition metals. To date, it is still in the laboratory stage for single-cell tests due to the stability issues fromthe membrane, cathodic and anodic catalysts. Particularly, the anodic catalyst for oxygen evolution reactions (OER) is highly unstable under such strong polarization. Recently, transition metal sulfides (TMS) have been widely used as anodic catalysts for their promising activity and stability.However, research on TMS focuses on in-situ growth on nickel foams and the corresponding halfcell performance, which leads to uncontrollable mass loading, poor repeatability, and low practicality. Moreover, matrix-free synthesis of sulfides with three-dimensional (3D)nanostructures and their morphological and structural evolutions during OER processes are rarely reported.
000916581 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000916581 8564_ $$uhttps://juser.fz-juelich.de/record/916581/files/Energie_Umwelt_597.pdf$$yOpenAccess
000916581 909CO $$ooai:juser.fz-juelich.de:916581$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175127$$aForschungszentrum Jülich$$b0$$kFZJ
000916581 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)175127$$aRWTH Aachen$$b0$$kRWTH
000916581 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000916581 9141_ $$y2022
000916581 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916581 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916581 920__ $$lyes
000916581 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000916581 9801_ $$aFullTexts
000916581 980__ $$aphd
000916581 980__ $$aVDB
000916581 980__ $$aUNRESTRICTED
000916581 980__ $$abook
000916581 980__ $$aI:(DE-Juel1)IEK-14-20191129
000916581 981__ $$aI:(DE-Juel1)IET-4-20191129