000916604 001__ 916604
000916604 005__ 20230113085404.0
000916604 0247_ $$2doi$$a10.1103/PhysRevA.106.022615
000916604 0247_ $$2ISSN$$a2469-9926
000916604 0247_ $$2ISSN$$a2469-9942
000916604 0247_ $$2ISSN$$a0556-2791
000916604 0247_ $$2ISSN$$a1050-2947
000916604 0247_ $$2ISSN$$a1094-1622
000916604 0247_ $$2ISSN$$a1538-4446
000916604 0247_ $$2ISSN$$a2469-9934
000916604 0247_ $$2Handle$$a2128/33350
000916604 0247_ $$2WOS$$aWOS:000874758500004
000916604 037__ $$aFZJ-2022-06360
000916604 082__ $$a530
000916604 1001_ $$0P:(DE-Juel1)176109$$aLagemann, H.$$b0$$eCorresponding author
000916604 245__ $$aNumerical analysis of effective models for flux-tunable transmon systems
000916604 260__ $$aWoodbury, NY$$bInst.$$c2022
000916604 3367_ $$2DRIVER$$aarticle
000916604 3367_ $$2DataCite$$aOutput Types/Journal article
000916604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672816823_11195
000916604 3367_ $$2BibTeX$$aARTICLE
000916604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916604 3367_ $$00$$2EndNote$$aJournal Article
000916604 520__ $$aSimulations and analytical calculations that aim to describe flux-tunable transmons are usually based on effective models of the corresponding lumped-element model. However, when a control pulse is applied, in most cases it is not known how much the predictions made with the effective models deviate from the predictions made with the original lumped-element model. In this work we compare the numerical solutions of the time-dependent Schrödinger equation for both the effective and the lumped-element models, for microwave and unimodal control pulses (external fluxes). These control pulses are used to model single-qubit (X) and two-qubit gate (iswap and cz) transitions. First, we derive a nonadiabatic effective Hamiltonian for a single flux-tunable transmon and compare the pulse response of this model to the one of the corresponding circuit Hamiltonian. Here we find that both models predict similar outcomes for similar control pulses. Then, we study how different approximations affect single-qubit (X) and two-qubit gate (iswap and cz) transitions in two different two-qubit systems. For this purpose we consider three different systems in total: a single flux-tunable transmon and two two-qubit systems. In summary, we find that a series of commonly applied approximations (individually and/or in combination) can change the response of a system substantially, when a control pulse is applied.
000916604 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000916604 536__ $$0G:(EU-Grant)820363$$aOpenSuperQ - An Open Superconducting Quantum Computer (820363)$$c820363$$fH2020-FETFLAG-2018-03$$x1
000916604 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916604 7001_ $$0P:(DE-Juel1)167542$$aWillsch, D.$$b1
000916604 7001_ $$0P:(DE-Juel1)167543$$aWillsch, M.$$b2
000916604 7001_ $$0P:(DE-Juel1)144355$$aJin, F.$$b3
000916604 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b4
000916604 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b5
000916604 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.106.022615$$gVol. 106, no. 2, p. 022615$$n2$$p022615$$tPhysical review / A$$v106$$x2469-9926$$y2022
000916604 8564_ $$uhttps://juser.fz-juelich.de/record/916604/files/PhysRevA.106.022615.pdf$$yOpenAccess
000916604 909CO $$ooai:juser.fz-juelich.de:916604$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000916604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176109$$aForschungszentrum Jülich$$b0$$kFZJ
000916604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
000916604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b2$$kFZJ
000916604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b3$$kFZJ
000916604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b5$$kFZJ
000916604 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000916604 9141_ $$y2022
000916604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000916604 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000916604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916604 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000916604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000916604 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000916604 980__ $$ajournal
000916604 980__ $$aVDB
000916604 980__ $$aUNRESTRICTED
000916604 980__ $$aI:(DE-Juel1)JSC-20090406
000916604 9801_ $$aFullTexts