000916631 001__ 916631
000916631 005__ 20230929112503.0
000916631 0247_ $$2doi$$a10.1093/braincomms/fcac331
000916631 0247_ $$2pmid$$a36601625
000916631 0247_ $$2WOS$$aWOS:000905773200004
000916631 0247_ $$2datacite_doi$$a10.34734/FZJ-2022-06382
000916631 037__ $$aFZJ-2022-06382
000916631 041__ $$aEnglish
000916631 082__ $$a610
000916631 1001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b0$$eFirst author
000916631 245__ $$aWhole-brain dynamical modelling for classification of Parkinson’s disease
000916631 260__ $$a[Großbritannien]$$bGuarantors of Brain$$c2023
000916631 3367_ $$2DRIVER$$aarticle
000916631 3367_ $$2DataCite$$aOutput Types/Journal article
000916631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689245157_20503
000916631 3367_ $$2BibTeX$$aARTICLE
000916631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916631 3367_ $$00$$2EndNote$$aJournal Article
000916631 520__ $$aSimulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and modelling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease against healthy controls in light of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demonstrated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-individual research and its clinical application.
000916631 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000916631 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916631 7001_ $$0P:(DE-HGF)0$$aFlorin, Esther$$b1
000916631 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R$$b2
000916631 7001_ $$0P:(DE-HGF)0$$aCaspers, Julian$$b3
000916631 7001_ $$0P:(DE-HGF)0$$aRubbert, Christian$$b4
000916631 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b5
000916631 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V$$b6$$eCorresponding author
000916631 773__ $$0PERI:(DE-600)3020013-1$$a10.1093/braincomms/fcac331$$gVol. 5, no. 1, p. fcac331$$n1$$pfcac331$$tBrain communications$$v5$$x2632-1297$$y2023
000916631 8564_ $$uhttps://juser.fz-juelich.de/record/916631/files/Invoice_E15835840.pdf
000916631 8564_ $$uhttps://juser.fz-juelich.de/record/916631/files/Jung-2022-BrainCommunications.pdf$$yOpenAccess
000916631 8564_ $$uhttps://juser.fz-juelich.de/record/916631/files/Whole.pdf$$yOpenAccess
000916631 8767_ $$8E15835840$$92022-12-14$$a1200192859$$d2023-05-08$$eAPC$$jZahlung erfolgt
000916631 909CO $$ooai:juser.fz-juelich.de:916631$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000916631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b0$$kFZJ
000916631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b2$$kFZJ
000916631 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000916631 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000916631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000916631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b6$$kFZJ
000916631 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000916631 9141_ $$y2023
000916631 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000916631 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000916631 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000916631 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000916631 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916631 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-02-21T13:34:18Z
000916631 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-02-21T13:34:18Z
000916631 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916631 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-24
000916631 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-24
000916631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN COMMUN : 2022$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-02-21T13:34:18Z
000916631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000916631 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000916631 920__ $$lyes
000916631 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000916631 980__ $$ajournal
000916631 980__ $$aVDB
000916631 980__ $$aUNRESTRICTED
000916631 980__ $$aI:(DE-Juel1)INM-7-20090406
000916631 980__ $$aAPC
000916631 9801_ $$aAPC
000916631 9801_ $$aFullTexts