001     916631
005     20230929112503.0
024 7 _ |a 10.1093/braincomms/fcac331
|2 doi
024 7 _ |a 36601625
|2 pmid
024 7 _ |a WOS:000905773200004
|2 WOS
024 7 _ |a 10.34734/FZJ-2022-06382
|2 datacite_doi
037 _ _ |a FZJ-2022-06382
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 0
|e First author
245 _ _ |a Whole-brain dynamical modelling for classification of Parkinson’s disease
260 _ _ |a [Großbritannien]
|c 2023
|b Guarantors of Brain
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689245157_20503
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and modelling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease against healthy controls in light of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demonstrated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-individual research and its clinical application.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Florin, Esther
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Patil, Kaustubh R
|0 P:(DE-Juel1)172843
|b 2
700 1 _ |a Caspers, Julian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rubbert, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Eickhoff, Simon B
|0 P:(DE-Juel1)131678
|b 5
700 1 _ |a Popovych, Oleksandr V
|0 P:(DE-Juel1)131880
|b 6
|e Corresponding author
773 _ _ |a 10.1093/braincomms/fcac331
|g Vol. 5, no. 1, p. fcac331
|0 PERI:(DE-600)3020013-1
|n 1
|p fcac331
|t Brain communications
|v 5
|y 2023
|x 2632-1297
856 4 _ |u https://juser.fz-juelich.de/record/916631/files/Invoice_E15835840.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916631/files/Jung-2022-BrainCommunications.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916631/files/Whole.pdf
909 C O |o oai:juser.fz-juelich.de:916631
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172843
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-02-21T13:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-02-21T13:34:18Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN COMMUN : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-02-21T13:34:18Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21