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Whole-brain dynamical modelling
for classification of Parkinson’s disease

®Kyesam jung,"2 ®Esther Florin,> ®Kaustubh R. Patil,'? Julian Caspers,4
Christian Rubbert,? ®Simon B. Eickhoff''? and (»Oleksandr V. Popovych'?

Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and model-
ling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated
whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease against healthy controls in light
of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived
by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and
controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented
amodel validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can
be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demon-
strated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation
results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results,
where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space
of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction
performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-indi-
vidual research and its clinical application.
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Simulated features from the whole-brain modeling improve
classification of patients with Parkinson’s disease.
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complementary features for patient classification.

Introduction

For decades, large-scale whole-brain connectivity acquired
from non-invasive in-vivo MRI has actively been used to
study the human brain as an integrative complex system.’
Accordingly, anatomical (or structural) and functional con-
nectivities between brain regions have been used. Previous
studies have shown that the structural architecture shapes
the temporal synchronization between the blood oxygen-
ation level-dependent (BOLD) signals in selected networks,
for instance the default mode network.>® However, the
structure-function correspondence is not high for whole-
brain connectivity.*® The correspondences between the
brain connectomes of the same and different subjects, sam-
ples or data modalities”® have been considered to investigate
the inter-individual differences’ or diagnostic classification
between healthy controls (HCs) and patients.*'%12
Connectivity relationships are also commonly used
when brain dynamics are modelled by mathematical whole-
brain dynamical models. In particular, finding the strongest

correspondence (the highest similarity) between empirical
functional connectivity (eFC) and simulated functional con-
nectivity (sFC) has been used for model validation.'>™"°
Such a correspondence of the simulated data to the empirical
data may undergo qualitative changes when parameters of a
given model vary and the validation procedure consists in
finding the most pronounced agreement between the data
and the model fitted by searching for optimal parameter
points.

Previous studies utilizing the discussed whole-brain model-
ling showed that the employed modelling approach was applic-
able to clinical research. The variability of the model parameters
between diseased and healthy states has been investigated for
brain disorders including schizophrenia,'®™"* Alzheimer’s dis-

21,22

ease,”® Parkinson’s disease and stroke patients.*® For in-

stance, Saenger et al.>> showed that therapeutic deep brain

stimulation in Parkinson’s disease can be modelled by the nor-

124

mal form of a Hopf bifurcation model.” Detailed simulations

of neuronal dynamics may also provide a way to test prognostic
outcomes i silico throughout virtual operations and optimize

the setup and parameters of therapeutic interventions.”> %
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Brain modelling for Parkinson’s disease

There are, however, no well-established standards for
model validation against empirical data. Several fitting mo-
dalities have been suggested in the literature, including the
fitting of the grand-averaged empirical and simulated FC ma-
trices, fitting the dynamical FCs, maximization of the meta-
stability and structure-functional model fitting®!3242%:30
On that account, it is necessary to investigate, which param-
eter points of a given dynamical mode and which model fitting
modalities are the most suitable to answer a given research
question by the modelling approach. For example, it was ob-
served that the distributions of the optimal model parameters
differ when using only functional or structure-functional
model fitting and may lead to subject stratifications showing
different model fitting values and optimal parameter points.>°
It is also well known that varying parameters of MRI data
processing influence the empirical structural and functional
connectomes and their analyses.’'* This subsequently af-
fects model validation.®>*° Therefore, the impact of data
processing on the results of model validation should be care-
fully considered, especially in clinical applications.

In Parkinson’s disease research, the eFC of the resting-
state networks was already being used in machine learning
approaches to subject classification.’®*” When sFC is in-
volved, it is essential to extract relevant features for
Parkinson’s disease classification from simulation results
via searching in a given model parameter space for the opti-
mal model. To do this, we considered two aspects of para-
meters regarding dynamical models and data processing.
First, we find the model parameters that reveal the most
prominent differences in connectome correspondence be-
tween Parkinson’s disease and HC. Such an approach can
be used for model validation. Here, we aim at a diagnostic
classification of patients from healthy subjects, where the
model fitting to behavioural (phenotypical) data might be
an alternative approach for model validation. We attempt
to provide a way to reveal and maximize the group difference
in simulated results by varying the parameters of dynamical
models. For instance, the disease status of the subjects can be
used for behavioural fitting, as we show in this study.
Second, we consider different temporal filters of BOLD sig-
nals, which are known to influence FC properties.’**” In
particular, the altered frequency bands were found to retain
Parkinson’s disease-related neural changes.*” The frequen-
cies of empirical BOLD signals, when included in the whole-
brain mathematical models, may influence the optimal
model parameters and the quality of the model fitting.®>°
In this context, investigation of the impact of temporal filter-
ing conditions on the model validation in Parkinson’s disease
data is important.

In the current study, we advance the classification of clin-
ical data by application of machine learning to empirical and
simulated connectomes. The functional connectomes were
calculated from empirical and simulated BOLD signals, re-
spectively, filtered in broad-, low- and high-frequency bands
for two different brain parcellations as given by the
Schaefer”' and Desikan—Killiany** brain atlases. As com-
pared with purely empirical studies, we take the next step
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based on the two aspects of parameters for model fitting mo-
dality and data processing and employ the simulated data to
improve the prediction results in a machine learning setting.

The current study employs whole-brain dynamical model-
ling of the resting-state functional MRI data based on the
Jansen—-Rit model type of interacting excitatory and inhibi-
tory neuronal populations.**** The simulated FCs generated
for the optimal model parameters based on model fitting mo-
dalities were used to calculate the connectome relationships
(Pearson’s correlation) with empirical structural and func-
tional connectivities. We also introduced a simple but effect-
ive method for model validation against behavioural data
more suitable for differentiation between patients with
Parkinson’s disease and HCs than the conventionally used
model fit to neuroimaging data. Consequently, the persona-
lized features derived from the connectome relationships
were used in this study for classification of Parkinson’s dis-
ease and HC using machine learning. We in particular
show that complementing empirical data with simulated
FC can improve the prediction performance for unseen sub-
jects. Our results suggest that the personalized whole-brain
models can serve as an additional source of information rele-
vant for disease diagnosis and possibly for their treatment as
well.

Materials and methods

We performed three main steps to obtain the whole-brain
connectivities eFC, eSC (empirical streamline counts), ePL
(empirical average path length) and sFC. Figure 1 schematic-
ally illustrates the data processing and simulation workflow.
We applied four temporal filtering conditions to empirical
and simulated resting-state BOLD signals. Subsequently,
we considered three types of connectivity relationship corre-
sponding to the correlation between eFC and eSC, the correl-
ation between eSC and sFC and the correlation between eFC
and sFC. Since sFC was calculated by varying the two free
model parameters of global coupling and global delay, the
correlations involving sFC change, as illustrated by the
eFC-sFC correlation landscape in the parameter space in
Fig. 1 (the rightmost colour plot). We used these three con-
nectivity relationships as features for the Parkinson’s disease
classification via a machine learning approach. To this end,
we trained Parkinson’s disease classifiers and evaluated their
performance based on prediction probabilities obtained on
unseen subjects.

The three considered whole-brain connectivities (eFC, eSC
and sFC) were calculated for 51 (30 males) HC and 65 (45
males) patients with Parkinson’s disease, see Table 1 for
the demography. Patients and controls were included in an
MRI data pool acquired at the University Hospital
Dusseldorf, Germany, which was also used in several recent
studies,®®37*54¢ \where additional details about the data
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Figure | Data processing and simulation overview. First (upper box), brain parcellations in the native space of T;w were prepared and
applied to the processed functional MRI data, BOLD signals were extracted from the corresponding brain regions and filtered according to four

temporal filtering conditions (right bottom box) and four respective eFCs were calculated. Second (middle box), the parcellations were also used
for the calculation of the structural connectivity by extracting streamlines from the WBT reconstructed using DWIs, where the number and length
of streamlines connecting any two brain regions were collected into matrices of eSC and ePL. Third (lower box), the structural connectome (eSC
and ePL) was used to build a brain network for the whole-brain modelling that simulates BOLD signals, which were filtered according to the
considered filtering conditions (right bottom box) and used to calculate sFC. Subsequently, we calculated connectivity relationships (Pearson’s
correlation) using these three connectivity matrices: (i) corr (eFC, eSC); (i) corr (sFC, eSC); and (ii) corr (eFC, sFC). Model parameters for global
coupling and global delay were varied to validate the model against empirical data. In particular, the correspondence (correlation) between eSC
and eFC and sFC was calculated for each parameter point, resulting in similarity landscapes in the model parameter space, see the example of the
relationship between eFC and sFC in the rightmost colour plot. The most pronounced correspondence (correlation) between the empirical and
simulated connectomes was selected, together with the respective optimal model parameters, as a result of the neuroimaging model fitting for

further analysis.

Table | Demography of subjects included in the study

Groups Mean (standard deviation) years Statistical tests P-values
All subjects Ve goodness-of-fit test
All 58.93 (10.25) 116 subjects 0.149
HC Patients Wilcoxon rank-sum two-tail test
All 55.02 (9.69) 62.00 (9.62) 51 HC versus 65 patients 0.000
Female 56.52 (9.40) 60.80 (8.96) 2| HC versus 20 patients 0.201
Male 53.97 (9.74) 62.53 (9.85) 30 HC versus 45 patients 0.001
Females Males Wilcoxon rank-sum two-tail test
All 58.61 (9.43) 59.11 (10.67) 4| females versus 75 males 0.751

can be found. All patients were diagnosed with Parkinson’s
disease by an experienced movement disorder specialist. All
HC subjects had no history of any neurological or psychi-
atric disease and no abnormalities were detected in cranial
MRI. The ages of 116 subjects (mean: 58.9 years and stand-
ard deviation: 10.3 years) are in a normal distribution (the
null hypothesis was not rejected by a y* goodness-of-fit test
with P=0.15). The age of patients was significantly higher

than that of controls (Wilcoxon rank-sum two-tail test).
The age of male patients was significantly higher than
that of male controls, but the age of females was not from
distributions with different medians. There was no age dif-
ference between females and males (Table 1). The study was
approved by the local ethics committee and performed in
accordance with the Declaration of Helsinki. All subjects
provided written informed consent prior to study inclusion.
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Brain modelling for Parkinson’s disease

Structural and functional MRI data were acquired usinga 3 T
scanner (Siemens Trio). A structural brain image was acquired
using a 3D T{-weighted image (T{w) sequence (TR=2.3s,
TE=2.96 ms, TI=900 ms, flip-angle=9°, field-of-view =
240 x 256 mm? in sagittal, the number of slices = 160, voxel
dimension=240x256 x 160, voxel size=1.0x1.0x1.1
mm?). Diffusion-weighted images (DWI) comprised a single
non-weighted (By) image and weighted (B=1000 s/mm?)
images with 64 directions (TR =6.7 s, TE = 81 ms, phase en-
coding: anterior to posterior, field-of-view =216 x216 mm?*
in axial, the number of slices=3535, voxel dimension=90 x
90 % 55, voxel size =2.4 X 2.4 x 2.4 mm?>). Resting-state func-
tional MRI was obtained using an echo-planar imaging se-
quence during 663 s (TR=2.21s, TE=30 ms, field-of-view
=200 %200 mm? in axial, the number of slices = 36, voxel di-
mension =64 X 64 x 36, voxel size=3.125x3.125x3.565
mm?). To prevent the distraction of streamline tracking, arte-
fact volumes of DWI were removed from the data based on
evaluation by two raters.

For the personalized data processing, we developed a contain-
erized in-house pipeline to process structural and functional
MRI in the native spaces. The pipeline consists of five mod-
ules: preprocessing of structural MRI (T;w and DWTI), whole-
brain tractography (WBT) calculation, atlas transformation,
reconstruction of structural connectivity (eSC and ePL) and
preprocessing of functional MRI. The pipeline comprises
Freesurfer,*” FSL,*® ANTs,* MRtrix3°° and AFNL®! It is
publicly available (https:/jugit.fz-juelich.de/inm7/public/vbc-
mri-pipeline).

The preprocessing module of structural MRI performed
the following steps: bias-field correction for Tw, alignment
of anterior-posterior commissures of Tyw, recon-all by
Freesurfer, removing the Gibbs ringing artefacts of DWTIs,
bias-field correction for DWIs, corrections of head motion,
b-vector rotations and eddy distortion of DWIs and
co-registration between averaged DWI and T ;w. This mod-
ule segmented subcortical areas based on voxel intensities
of the Tyw. It also prepared labelling annotations using a
brain atlas, for which a classifier was available from the lit-
erature. The annotation can also be created based on a sub-
ject cohort by capturing region data either drawn by
neuroanatomists or according to dedicated algorithms.**

The WBT calculation module included only MRtrix3
functions. They estimated response functions for spherical
deconvolution using the constrained deconvolution algo-
rithm.>® Fibre oriented distributions (FODs) were esti-
mated from the DWIs using spherical deconvolution, and
the WBT was created through the fibre tracking by the
second-order integration over the FOD by a probabilistic
algorithm.>* In the latter step, we used 10 million total
streamlines for the WBT density. The tracking parameters
of the tckgen function were set as in the previous study:*°
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step size =0.625 mm, angle =45°, minimal length=2.5 mm,
maximal length =250 mm, FOD amplitude for terminating
tract=0.06, maximum attempts per seed = 50, the maximum
number of sampling trials=1000 and downsampling=3
(FOD samples per steps—1).

The atlas transformation module annotated labels using a
classifier to parcel cortical regions in the native T{w space using
Freesurfer. In the present study, we applied two atlas classifiers
for brain parcellations, the Schaefer atlas with 100 parcels*!
and the Desikan—Killiany atlas with 68 parcels.** Both atlases
provide cortical parcellations, where the former is based on
functional MRI data, while the latter is labelled by gyral-based
anatomical parcellation. After this, the subcortical areas seg-
mented by the preprocessing module were included and com-
bined with the labelled cortical parcels. Finally, the pipeline
transformed the labelled image (cortical parcels and subcortical
regions) from the T;w to DWI native spaces.

The reconstruction module calculated the matrices of the
streamline counts (SCs) and the matrices of the average
path lengths (PLs) of the streamlines extracted between any
two parcellated brain regions from the calculated WBT
with the transformed, labelled image in the DWI space.

The preprocessing module of functional MRI performed
slice time correction, head motion correction, re-slicing in
a 2 mm iso-cubic voxel space, intensity normalization, de-
trending with filtering of very slow fluctuations out (high
pass), co-registration to the T;w and calculation of regres-
sors for the white matter, cerebrospinal fluid (CSF) and brain
global signals as well as for the head motion. The pipeline
also transformed the labelled image of the brain parcellation
generated in the native Tyw space to the functional MRI na-
tive space. Finally, we performed a nuisance regression with
the prepared regressors (white matter, CSF and the brain glo-
bal signals, as well as head motions).

After preprocessing of MRI, we extracted mean BOLD sig-
nals based on the annotated atlas labels and applied three
temporal band-pass filtering conditions in the frequency
ranges of (0.01,0.1) Hz (broad-frequency band; BF),
(0.01,0.05) Hz (low-frequency band; LF) and (0.05,0.1)
Hz (high-frequency band; HF). Therefore, four filtering con-
ditions were considered: no filtering (NF), BF, LF and HF.
The filtering was done using a script in the Python program-
ming language (version 3.8, Python Software Foundation,
https:/’www.python.org/) using the SciPy (version 1.5) signal
processing module®® and NumPy’® (version 1.19) for the
temporal band-pass filtering. We used the Butterworth digit-
al filter of order 6, scipy.signal.butter.

The whole-brain resting-state dynamics considered in this
study was simulated by a system of N coupled neuronal
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models representing the mean brain regional activity.
Each region contains two populations for each neuronal
type (excitatory and inhibitory) that interact with each
other via postsynaptic potentials (PSPs).**> The considered
convolution-based model is of the Jansen—Rit type**°” and
simulates the PSP signals involving other brain regions that
interact with time delay in coupling according to the calcu-
lated structural connectivity, i.e. SC and PL matrices. The
following set of differential equations describes the mean dy-
namics of the excitatory and inhibitory PSPs of region n=1,
2 N

5 eeey 5

Vie(E) = Zne(t), (1)

V() = 2ui(2), (2)
Zne(t) = Ppo(t) = 2R, 20 (t) = @ Royne(t) + 11,0, (3)
Zni(t) = Ppi(t) = 26Ry20i(2) = D*R3yi(0) + 1,05
n=1,2, ..., N.

(4)

Here, 2,0, 2ni> Yne and y,,; are the excitatory postsynaptic
current, the inhibitory postsynaptic current, the excitatory
PSP (EPSP) and the inhibitory PSP (IPSP) of the brain region
n, respectively, where the subscripts e and i stand for excita-
tory and inhibitory, accordingly. The model (1)—(4) is a sys-
tem of driven harmonic oscillators in a critical damping
regime, where the system quickly returns to its steady state
after perturbation without undershooting. Parameters a
and b represent the reciprocal of the time constants of the
PSP kernel for the two populations for EPSP and IPSP, re-
spectively. #,, and 7,; are independent noise sampled
from a random uniform distribution between —1.5 and
1.5 V/s%. For frequency of oscillations, we also introduced
a scaling factor R. By increasing R, the spectral power of
the PSP signals shifts to higher frequencies. Perturbation
P, . drives EPSP oscillations regarding input signals
from other regions, i.e. it models the coupling between
the network nodes/brain regions and P,,; perturbs IPSP
oscillations by the input from the excitatory population in
the same region 7,

CE
— 2 § P
Pn,e(t) = A(ZRnO'e (N Cnmym,e(t - Tnm) - Cetyn,t(t)>a (5)

m#n

P,.i(t) = BbR26/(Cieyne(t), n=1,2, ---, N. (6)

A and B are the maximum amplitudes of the PSP kernels for
EPSP and IPSP, respectively. N is the total number of brain
regions/network nodes for the whole-brain model. In
Equation (5), Cis a global coupling parameter, which scales
the couplings throughout the whole-brain network. C,,,,, is
the strength of the individual coupling from region m to re-
gion n, which is realized via weighting the EPSP signal of the
m-th network node y,, . considered with time delay z,,,.
Parameter C,; weights an input coming from the inhibitory
population of the same brain region, i.e. IPSP vy, ;. The

K. Jung et al.

individual time delays and coupling strengths between re-
gions m and 7 can be estimated from the empirical data as

wnm
Tnm = Tglobaanma Com = W’ (7)

where the averaged path length L,,,,, (from the matrix PL) of
the reconstructed streamlines between regions 7 and m is
scaled by a global delay parameter zgopa. Cpp in
Equation (7) calculates an individual coupling strength by
taking into account the SC matrix, where the number of
streamlines w,,,, between the two regions was normalized
by an averaged number of streamlines W calculated over
all connections except for the self-connections. As follows
from Equation (5), the coupling between brain regions is
realized between the excitatory populations, where the de-
layed EPSP signals from the other brain regions composed
the coupling term. Together with the intra-regional coup-
ling by the IPSP signal from the inhibitory population, the
total PSP input to the excitatory population is converted
by a nonlinear sigmoid function o,(v) given in Equation (8) be-
low to an averaged firing density. The inhibitory population in
region n received an input EPSP signal weighted by parameter
C;. from the excitatory population of the same region only,
which was again converted to an averaged firing density by
the following sigmoid function o;(v):

_ Fe _ Fi
= Trewn M= T

(8)

oe(v)

In Equation (8) of the mentioned sigmoid functions, the par-
ameter 7 is a slope, vg is a half of the maximal neural activity
and parameters F, and F; are the maximal firing densities of
the excitatory and inhibitory populations, respectively.
Parameter values of the considered two-population model
Equations (1)—(8) are given in Table 2.

We calculated the regional BOLD signals using the corre-
sponding EPSP signals simulated by the electrical model
Equations (1)—(8) introduced in the previous section.
Several examples of the time courses of the EPSP signals gen-
erated by the considered model and their power spectra are
illustrated in Supplementary Fig. 1. Neurovascular coupling
and hemodynamic responses constitute the process reflected
in the Balloon-Windkessel (BW) model that was utilized to
convert the simulated neural activity to BOLD signals,”®~%°
see details in the Supplementary material.

In this study, we considered two model fitting approaches:
neuroimaging model fitting and behavioural model fitting.
The former is well known in the literature and consists of val-
idation of the model via comparing simulated data against
neuroimaging empirical data. In this study, the Pearson’s
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Table 2 Parameter values of the electrical model and the BW model

Electrical model Variables Values BW model Variables Values
Max. sigmoid (excitatory) Fe 100s™" Echo time TE 30 ms
Reciprocal of the time constant of the EPSP kernel a 100* s~ Mean-transit-time tmTT 2°s
Max. EPSP A 325 mV Net oxygen extraction fraction at rest Eo 0.4°
Max. sigmoid (inhibitory) F; 505~ Venous blood volume fraction Vo £ %
Reciprocal of the time constant of the IPSP kernel b 50* s~ Frequency offset for 3 T % 80.6° s~
Max. IPSP B 22° mV Ratio of intra/extra-vascular signal I3 0.3°
Slope of sigmoid r 0.56* mv~' Sensitivity (regression slope) ro 25° 57!
50% neural activity Vo 6’ mV Steady state flow-volume relationship a 0.38°
Intra-regional coupling Cie Rate constant for damped oscillations K 0.64° Hz
(from excitatory to inhibitory)
Intra-regional coupling Cei Rate constant for damped oscillations y 0.32° Hz
(from inhibitory to excitatory)
Scaling factor R Values of initial conditions [s, fs v, q] [o,1,1,17¢

Amplitude of noise

1.5 V/s?

aValues from Jansen and Rit study.44
bValues from Havlicek et al.*®

cValues empirically determined based on the trajectories generated by the BW model.

EPSP, excitatory postsynaptic potential; IPSP, inhibitory postsynaptic potential.

correlation coefficient between eFC and sFC (comparing the
upper triangle without self-connections of the connectivity
matrices) was calculated and denoted as goodness-of-fit
(GoF) values. Searching for the maximal GoF in a given par-
ameter space is a well-established approach for model valid-
ation in whole-brain modelling studies."*™' In this study, we
optimized the coupling and delay model parameters to maxi-
mize the GoF value on a parameter grid of 64 x 43 points (64
global couplings and 43 global delays) densely covering the
parameter plane, respectively. In addition, we also consid-
ered the connectivity relationship between eSC and sFC as
for separate neuroimaging model fitting. In consequence,
two types of neuroimaging model fitting (eFC versus sFC
and eSC versus sFC) were used in this study. As this proced-
ure fits the model to the connectivity derived from the empir-
ical neuroimaging data, we term it neuroimaging model
fitting.

We also introduce bebavioural model fitting as a proced-
ure to validate a model against behavioural data, for ex-
ample, optimizing the model to reflect some behavioural
(phenotypical) properties to the best possible extent. In this
study, we optimized the parameters of the model to max-
imally differentiate between Parkinson’s disease patients
and HC subjects. For this, we calculated the effect size based
on the z-statistics of the Wilcoxon rank-sum two-tail test as
given by the Rosenthal formula, i.e. the normal z-statistics
divided by the square root of the number of observations®’
of the difference between the (neuroimaging) GoF values of
the HC and Parkinson’s disease subject groups. The effect
size was calculated for every parameter point in the consid-
ered parameter space of 64 x43 grid and represented as a
parameter map. In this way we obtained a parameter land-
scape of the group differences and were able to investigate
the differentiation of GoF values of Parkinson’s disease pa-
tients from those of HC subjects. This parameter landscape
reflects the relation of the model GoF to the behavioural

data (in this study, to the differentiation based on clinical
measures), and we thus used this approach as behavioural
model fitting. To evaluate the parameter areas of significant
group difference, we performed the Wilcoxon rank-sum
two-tail test and obtained a corresponding P-value parameter
map. Due to the multiple comparisons over the parameter
points, we applied the random-field thresholding scheme®>%?
using a 2D Gaussian kernel smoothing. Subsequently, we
obtained a Z-score map and thresholded it to retain statistic-
ally significant parameter areas (alpha=0.05). Finally, we
searched for the optimal model parameters within the signifi-
cant parameter areas corresponding to the maximal effect
size. We considered two connectivity relationships (eFC
versus sFC and eSC versus sFC) for the behavioural model
fitting.

We performed a random sampling to test the stability of the
optimal parameter points for the behavioural model fitting.
To do this, the stability of the results was assessed by sex-
balanced stratified subsampling. After a random sampling
of 72 subjects (36 HC subjects and 36 Parkinson’s disease
patients) out of 116 subjects, we applied the behavioural
model fitting to the sampled subjects and found optimal
parameters corresponding to the largest effect size. The
subsampling and the corresponding calculations were re-
peated 1000 times.

The current task is to train a binary classifier (Parkinson’s
disease versus HC) using 10 features (five connectivity
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relationships from two parcellation schemes), which are of
lower dimension than observations (116 subjects). We con-
sidered a simple regularized logistic regression that is a
sparse method possessing good interpretability and is
known to work well in many applications.®*™°® There might
be other methods that could give better accuracy.®” The
main goal of the current study was however to compare
the prediction results between several computational condi-
tions including data processing and model validation. This
could be demonstrated using such a linear (interpretable)
machine learning method without an exhaustive search
for the methods and conditions for the best performance.
Thus, logistic regression is applicable to the current study.
To this end, we used a regularized logistic regression with
the least absolute shrinkage and selection operator
(LASSO) for training and classification of HC versus
Parkinson’s disease subjects.®® To avoid an overfit, the
training error included the deviance and an L-penalty.®’
We used the lassoglm function for the logistic LASSO re-
gression and the glmval function for predicted probability
calculation in the Statistics and Machine Learning
Toolbox of MATLAB R2020b.

We used a cross-validation (CV) scheme to train the logistic
LASSO regression for Parkinson’s disease classification. As
for a degenerative disease,””! features for Parkinson’s dis-
ease classification should be controlled by an age effect via
a confound regression. Due to a random sampling from the
same cohort and the usage of the same data for model val-
idation and model training, it is important to prevent pos-
sible data leakage during the CV procedure, especially for
behavioural model fitting as it uses data across subjects.
Otherwise, the trained models might be biassed due to the
usage of the results of the behavioural model fitting derived
from Parkinson’s disease classification against HC. In this
respect, we followed the ideas of the cross-validated con-
found regression’? as illustrated in Fig. 2. Specifically, we
applied the CV-consistent approach to features derived
from the empirical result, neuroimaging and behavioural
model fitting. Accordingly, the subjects were split into
training and test sets (Fig. 2, green and orange blocks in
the outer loop) and the optimal parameter point of the be-
havioural model fitting was calculated on the training set
at every iteration of the outer CV loop (Fig. 2, the green
box with the Circle 1). Then the respective connectome re-
lationships were calculated for every subject. Next, the age
was regressed out for these subjects (cross-validated con-
found regressions in Fig. 2, Circles 1 and 2) from the ob-
tained features of connectivity relationships used for
subject classification. The optimal model parameters and
the regression coefficients obtained for the training set
were then used for the connectome calculation and the
age regression for the test subjects.

K. Jung et al.

In order to avoid over-optimistic results of CV,”® we used
nested CV to train the logistic LASSO regression for
Parkinson’s disease classification (Fig. 2). In the outer loop,
we randomly split the subjects into five subsets. One subset
of 20% of subjects was considered as a test set (unseen sub-
jects, the orange box in the outer loop in Fig. 2) and the other
four subsets were pulled together and composed a training
set (the green boxes in the outer loop in Fig. 2). As explained
above, we first applied the cross-validated model fitting and
confound regression to the features in the training set (Fig. 2,
the green box with the Circle 1). Subsequently, the training
set (age-controlled) was split into ten subsets for the nested
CV in the inner loop. A logistic LASSO regression model
was trained with the hyperparameters minimizing the
10-fold CV error. This model was then applied to predict
the test set. As follows from the aforementioned, the age-
controlled training and test sets were used for model training
and prediction, respectively. The training and testing proced-
ure we performed can be summarized as follows:

(i) Randomly split the entire subject cohort into five
subgroups.

(ii) Select one group as a test set and compound the others
into a training set.

(iii) Perform the cross-validated (behavioural) model fit-
ting using the training set and extract respective con-
nectome relationships corresponding to the optimal
model parameters.

(iv) Perform the cross-validated confound (age) regression
for the training set from the features based on the con-
nectome relationships used for classification.

(v) Train the logistic LASSO regression model in the inner
loop with a 10-fold CV that minimizes errors in the
prediction model.

(vi) Apply the trained best model to predict the test set with
age regression, where the optimal model parameters of
the model fitting and age regression coefficients ob-
tained for the training set were used (Fig. 2, the dashed
arrow in the outer loop).

(vii) Calculate the model performance using a confusion
matrix and an receiver operating characteristic
(ROC) curve.

(viii) Perform Steps (ii)—(vii) for the other four subsets split
in Step (i) as test sets in the outer CV loop (five predic-
tion results).

(ix) Repeat Steps (i)—(viii), 50 times (250 prediction results
in total).

For Parkinson’s disease classification based on the discussed
machine learning approach, we considered five features for
each of the two parcellation schemes (Schaefer and
Desikan—Killiany atlases), i.e. 10 features in total: corr
(eFC, eSC) as an empirical feature, corr (eFC, sFC) and
corr (eSC, sFC) as simulated features for each model fitting,
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Figure 2 Schematic illustration of cross-validated model fitting, cross-validated confound regression and nested CV. The boxes
under the ‘Training set’ in the leftmost plot illustrate randomly split subject subgroups used for training the model in the 5-fold outer loop and in
the 10-fold inner loop. The box under the ‘Test set’ in the outer loop depicts the testing subject subgroup used for evaluation of the prediction
performance of the trained model as given by accuracy, sensitivity, specificity, balanced accuracy and area under the ROC curve. P, positive as
patients; N, negative as controls; TP, true positive; FP, false positive; TN, true negative; FN, false negative.

i.e. the neuroimaging model fitting and the behavioural mod-
el fitting. To investigate the impact of simulated results on
the Parkinson’s disease prediction, we composed the consid-
ered features into three conditions: (i) empirical features only
(shuffle simulated features); (ii) simulated features only
(shuffle empirical features); and (iii) all features (no shuf-
fling). The shuffling was performed by a random re-
distribution of the values of a given feature among subjects
such that the correspondence of the feature to individual sub-
jects was destroyed. By focusing on some features (connec-
tome relationships and parcellations), the other features
were shuffled. For example, to focus on the empirical fea-
tures of the Schaefer atlas, four simulated features (eFC ver-
sus sFC and eSC versus sFC for two model fitting modalities)
of the Schaefer atlas and all five features (one empirical and
four simulated features) of the Desikan—Killiany atlas were
shuffled. The shuffling was performed for every feature sep-
arately, randomizing feature values across subjects while re-
taining distributional properties (Supplementary Fig. 2).
After feature selection, model training and application of
the trained model to the unseen test subject set, we calculated
a confusion matrix from the prediction results and plotted a
ROC curve.”* The latter was calculated from the prediction
results obtained by varying the subject classification thresh-
old of a predicted probability from 0 to 1. Then, we calcu-
lated the prediction performance (accuracy, sensitivity,
specificity and balanced accuracy) and the area under a curve
(AUC) of the ROC curve.

In addition to the prediction considering the cross-
validated confound regression with subjects’ ages using the
entire cohort, we also applied the same approach to a ba-
lanced subject configuration by excluding the 17 oldest

Parkinson’s disease patients from 116 subjects. Thus, the ba-
lanced cohort has no significant age difference between
Parkinson’s disease and HC groups with balanced group
sizes (see Supplementary Table 1). Subsequently, we ana-
lysed the prediction performances of the balanced subject co-
hort (99 subjects).

Statistical analysis was performed using functions in the
Statistics and Machine Learning Toolbox of MATLAB
R2020b. We set significance level at P<0.05. We applied
the Bonferroni correction to prevent multiple comparison is-
sues when the test was used multiple times. Statistical tests
used in the results were mentioned in each legend of figures
and tables. We also scrutinized the prediction probabilities
for individual subjects to evaluate the model’s performance.
Here, the trained model estimated the predicted probabilities
for each subject in the test set. Subsequently, we calculated a
fraction of actual positives and showed relationships using
probability calibration. The ideal case is to have the same va-
lues for the fraction of positives and the predicted probabil-
ity, i.e. the graph should align to the diagonal. In clinical
applications, the tight correspondence between predicted
probabilities and the fraction of actual positives provides
high trustworthiness for diagnosis.”* To this end, we used
the Brier score’® to calculate the mean-squared error of
each predicted probability against an ideal case. We also
used the Wasserstein distance to show how much cost is re-
quired to turn a given distribution of the predicted probabil-
ities into a uniform one.”” In other words, this metric was
used to evaluate how well predicted probabilities were
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uniformly distributed. Thus, a lower Wasserstein distance
means that the predicted probabilities are relatively better ca-
librated than those of a higher one. Accordingly, we further
evaluated the model’s performance regarding individual pre-
dicted probabilities in addition to the integrative perform-
ance from the confusion matrix.

Results

In this study, we investigated the application of simulation
results from whole-brain dynamical models to Parkinson’s
disease classification using relationships between empirical
and simulated connectomes as features. The whole-brain dy-
namical model of the Jansen—Rit type was used to simulate
the electrical neuronal activity and was validated against em-
pirical data by means of neuroimaging or behavioural model
fitting. Accordingly, we calculated the connectome relation-
ships involving the simulated connectomes corresponding to
the optimal model parameters of the two fitting modalities
and used them as features for Parkinson’s disease classifica-
tion. We show that complementing the empirical data by si-
mulated data improves the prediction performance as
compared with the case where only empirical data were used.

We calculated sFC using simulated BOLD signals for each
parameter point and obtained the similarity (Pearson’s cor-
relation) values between eFC and sFC. Figure 3 shows the
corresponding landscapes of the GoF values in the delay-
coupling (tgopa, C) parameter space averaged over all
subjects, the distributions of the maximal GoF values and
corresponding optimal model parameters for individual sub-
jects for the Schaefer atlas (Fig. 3A-D) and the Desikan—
Killiany atlas (Fig. 3E-H). We calculated eFC and sFC for
the different frequency ranges of the corresponding filtered
BOLD signals, i.e. NF, BF, LF and HF conditions (see
Materials and methods for details). The profiles of the par-
ameter landscapes were different between the considered
brain atlases. The Schaefer atlas showed a unimodal distri-
bution containing maximal GoF values (the dashed circle
in Fig. 3A) for the optimal global delays in the biologically
feasible range’® from 0.06 to 0.25 s/m (Fig. 3D). On the
other hand, the maximal GoF for the Desikan—Killiany atlas
posited a bi-modal distribution (the dashed circles in Fig. 3E)
with well-separated peaks along the global coupling param-
eter (Fig. 3G, compare with Fig. 3C). Moreover, stronger
global coupling of the maximal GoF values was accompan-
ied by a widespread global delay (the upper dashed circle
in Fig. 3E) that may get out of the biologically feasible range
as compared with the weaker global couplings (the lower
dashed circle in Fig. 3E).

Furthermore, we observed that applying temporal filtering
to BOLD signals diminished GoF values over the entire par-
ameter landscape (Fig. 3B and F). In particular, the narrow
frequency bands (LF and HF) resulted in significantly lower

K. Jung et al.

maximal GoF values than in the cases of the broader (BF) or
entire frequency (NF) range; see Table 3 for statistical
results.

The behavioural model fitting resulted in effect sizes of group
difference between HC and Parkinson’s disease (Fig. 4A-B
for eFC-sFC correlation, see Supplementary Fig. 3 for
eSC-sFC correlation). Furthermore, we also observed that
the distributions of the optimal parameter points corre-
sponding to the maximal effect sizes are densely concen-
trated in the parameter space across repeated subsampling
(1000 times) and filtering conditions (Fig. 4C-D, distribu-
tions in blue). Interestingly, the distributions of the optimal
parameters derived from the behavioural model fitting
were strikingly different from those determined by the neu-
roimaging model fitting (Fig. 4C-D, distributions in orange
for the neuroimaging and in blue for the behavioural fitting).
Both sets of optimal parameters are located in the biological-
ly plausible range of time delay.”®

The empirical structure-function relationships corr(eFC,
eSC) for HC and Parkinson’s disease subject groups were
found to be from distributions with different medians for
the Schaefer atlas and all considered filtering conditions
and for the LF condition only for the Desikan—Killiany atlas
(Fig. 5, the first row). The group differences obtained by in-
volving the simulated connectomes in the neuroimaging
model fitting were small and non-significant for both atlases
and all filtering conditions (Fig. 5, the second and third
rows). On the other hand, for behavioural model fitting,
we observed that Parkinson’s disease patients exhibited
stronger agreements between empirical and simulated con-
nectomes than HC subjects and can thus be better differen-
tiated from HC (Fig. 3, the fourth and fifth rows).
Temporal filtering may influence the group differences for
the empirical and also for the simulated connectomes as illu-
strated in Fig. 5, see the first row for the Desikan—Killiany at-
las, in particular and Supplementary Fig. 4. In addition, we
calculated the explained variances of the five connectivity re-
lationships between each other for the same and different fil-
tering conditions, which resulted in relatively low similarities
for the simulated results (Supplementary Fig. 3).
Accordingly, the temporal filtering can influence the consid-
ered connectivity relationships and may lead to dissimilar
patterns of connectome relationships across subjects.

We used the five whole-brain connectivity relationships as
features for Parkinson’s disease classification using machine
learning based on the logistic LASSO regression algorithm.
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Figure 3 Results of the neuroimaging model fitting. (A-D) The Schaefer atlas and (E-H) the Desikan—Killiany atlas. (A, E) Parameter
landscapes of the similarity (Pearson’s correlation) between eFC and sFC, i.e. goodness-of-fit (GoF) values averaged over the entire subject
cohort. The landscapes are illustrated for each filtering condition (NF, BF, LF and HF, see Materials and methods for details). The dashed circles
delineate the hills with large GoF values. Distributions of (B, F) the maximal GoF values, (C, G) optimal coupling parameters and (D, H) the
respective optimal delays corresponding to the maximal GoF values for each filtering condition. The distributions of the maximal GoF values are
significantly different across filtering conditions (P=0.000 for the Schaefer atlas and P=0.000 for the Desikan—Killiany atlas; Kruskal-WVallis
non-parametric one-way analysis of variance test). Post-hoc: Significantly different filtering conditions are NF > BF, NF > LF, NF > HF, BF > LF and
BF > HF in both atlas conditions (Wilcoxon signed-rank two-tail test, Bonferroni corrected P < 0.05, see Table 3 for details). The distributions of
the optimal coupling parameters are not significantly different (P=0.317 for the Schaefer atlas and P=0.505 for the Desikan—Killiany atlas; the
Kruskal-Wallis test). The distributions of the optimal delays are not significantly different (P=0.459 for the Schaefer atlas and P=0.824 for the
Desikan—Killiany atlas; the Kruskal-WVallis test). The dashed horizontal lines in plots (D, H) indicate the biologically feasible delay range regarding
the electrophysiological conduction speed. The middle lines in interquartile box plots indicate the medians of distributions, and the red plus signs

are the outliers.

The feature space constituted three feature conditions with
ten features (five connectivity relationships for two atlases),
see Supplementary Fig. 2. After the nested CV, the trained
best models were relatively well balanced, with a slight ten-
dency towards overfitting for some of the used performance
measures (13.4% decreased balanced accuracy and 1.1% de-
creased AUC of test performance from training one, see
Supplementary Fig. 6).

Figure 6 shows the prediction performance for each of the
investigated conditional cases of brain parcellations, fre-
quency bands and feature conditions. The first important ob-
servation is that involvement of the simulated connectomes
can improve the classification of Parkinson’s disease and
HC, see Fig. 6 and compare blue dots (empirical features)
to red dots (simulated features) and to yellow dots (all fea-
tures) (see Supplementary Fig. 7 for the differences). In the
latter case, where the empirical features are complemented
by the simulated ones, the prediction performance can only
be enhanced as compared with purely empirical features,
which we observed for most feature conditions and perform-
ance measures (Fig. 6A-C). Interestingly, the performance
further improved when using features from both atlases
(Fig. 6 and Supplementary Fig. 7).

We also investigated how the prediction performance var-
ies depending on the filtering conditions (Fig. 6D). The effect
of the temporal filtering was prominent of the empirical fea-
tures for the Schaefer atlas, where the performance was sig-
nificantly increased for the LF condition compared with the

others (Fig. 6D, the ‘Emp.’ column for the Schaefer atlas). On
the other hand, the HF condition showed low performances
on the empirical features, in particular, with very low speci-
ficities down to zero (Fig. 6B and D) and very high sensitiv-
ities up to 1 (Supplementary Fig. 8), where the LF filtering
seems again to be a beneficial condition for Parkinson’s dis-
ease prediction. Summarizing, the temporal filtering condi-
tions influenced the model performance and the LF
band-pass filtering resulted in the most effective prediction
relying on the connectome relationships. The other consid-
ered narrow-band HF filtering condition is not advisable
for Parkinson’s disease classification. However, involving
the simulated connectomes is still of advantage also under
this condition as compared with using only empirical
features.

We also compared the prediction performance when the
simulated connectomes obtained from the neuroimaging
and behavioural model fittings were considered separately.
This resulted in two additional feature conditions (see
Supplementary Fig. 8). The neuroimaging model fitting in
most cases led to a weaker prediction performance compared
with the behavioural model fitting or to the composite case
when the features of both fittings are merged. This justifies
the introduction of the behavioural model fitting for subject
classification.

Furthermore, we applied the current approach to the ba-
lanced subject configuration (99 subjects, see Supplementary
Table 1 for the demography). The prediction performance
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Figure 4 Parameter maps of the effect size of the difference between goodness-of-fit (GoF) values (eFC-sFC correlation) of
healthy and Parkinsonian groups used for the behavioural model fitting. The filtering conditions are indicated in the plots for (A) the
Schaefer atlas and (B) the Desikan—Killiany atlas. Effect sizes in the (zgopa, C)-parameter plane were calculated by a non-parametric Wilcoxon

rank-sum two-tailed test between patients and controls in the GoF values for each parameter point. (C, D) Distributions of optimal parameters
derived from the neuroimaging model fitting (orange, all subjects, n = | 1 6) and the behavioural model fitting (blue, repeated subsampling, n = 1000)

for (C) the Schaefer atlas and (D) the Desikan—Killiany atlas.
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Figure 5 Differentiation between healthy and Parkinsonian subjects as reflected by the relationships between empirical and
simulated connectomes. (Left) The Schaefer atlas and (Right) the Desikan—Killiany atlas. The simulated connectomes are calculated for the
optimal model parameters of the neuroimaging and behavioural model fitting as indicated on the vertical axis. Summary tables of the effect sizes
(numbers) of the differences between Parkinsonian and healthy subject groups are calculated by the Rosenthal formula and shown in negative for
HC < Parkinson’s disease and positive for HC > Parkinson’s disease. The significant cases are indicated by rectangles as given by the Bonferroni

corrected P-values of the Wilcoxon rank-sum two-tail test.

was consistent with the main findings of the entire cohort (116
subjects, Fig. 6). In other words, complementing empirical
data with simulated results using LF filtering involving multi-
parcellation (concatenating both atlases) is advisable for
Parkinson’s disease classification (Supplementary Fig. 9).
Figure 6 shows the well-known measures characterizing
the prediction performance as median values and interquar-
tile ranges of distributions. Although these measures clearly
reflect how well the machine learning approach is commonly
working, we may also be interested in how every test is per-
forming for the classification of individual unseen subjects.
In this respect, Fig. 7 illustrates the results of classification/
prediction probabilities of all tests performed on individual

subjects from the test sets. The prediction probabilities
were collected and related to the probability calibration
curves.

We can interpret the probability calibration plots
(Fig. 7A-C) according to two aspects. Feature conditions
using simulated results (red and yellow curves) resulted in
predictions that are more closely aligned with the ideal
case (the diagonal black line) than the empirical relationship.
Indeed, for the Schaefer atlas and the multi-parcellation case,
the distance to the diagonal as given by the mean-squared er-
ror of the predicted probabilities against the actual classes
calculated according to the Brier score’® is minimal for the
composed features, including the empirical and simulated
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Figure 6 Summary of the performance of Parkinson’s disease classification using the three different feature conditions:
empirical features (left distribution), simulated features (middle distribution) and all features (right distribution) after incorporating the age
controlling and the behavioural model fitting during the nested CV (Fig. 2). The median values of the balanced accuracy, specificity and AUC of the
ROC curves for all considered parcellations and filtering conditions are shown in each panel for (A) balanced accuracy and (B) specificity and (C)
AUC. The error bars indicate the interquartile range of 250 tests represented as data points in the plots across 50 iterations of the outer loop
(5-fold) of the nested CV procedure (Fig. 2). The horizontal brackets connecting two coloured distributions indicate significantly different
performance between feature conditions (Bonferroni corrected P < 0.05; Wilcoxon signed-rank two-tail test). (D) Effect sizes between filtering
conditions for each feature condition. The signs ‘<’ and *>’ indicate which condition is significantly larger than the other. For example, ‘<’ sign for
‘NF-LF’ indicated on the vertical axes means NF < LF for a given feature condition indicated on the horizontal axes. The Wilcoxon signed-rank
two-tail test was used for comparisons across feature and filtering conditions (Bonferroni corrected statistics). The Desikan—Killiany atlas is

shortend as ‘Desikan’.

connectomes for the LF filtering condition (Fig. 7E). As a se-
cond aspect, the prediction probabilities derived from the
empirical features are more narrowly distributed around
0.5 (blue curves in Fig. 7D) compared with the case of all fea-
tures (yellow curves in Fig. 7D). This can be quantified by the
minimum cost of turning the observed distribution into a
uniform distribution using the Wasserstein distance’’
(Fig. 7F). In the latter case, the predicted probabilities de-
rived from all features show widely spreading distribution
that also reach the low and high probability values, which in-
dicates high confidence.” In other words, in our predictive
modelling, the prediction results, where the empirical data
were complemented by simulated features, were better cali-
brated in some cases as compared with the case of the empir-
ical data only (Fig. 7C). As mentioned above, the
Wasserstein distance in Fig. 7F clearly shows which filtering
condition and which feature condition can be the best bene-
ficial configuration for Parkinson’s disease classification. In
particular, the LF filtering of the BOLD signals and involving
of the simulated connectomes together with the empirical
ones for the Schaefer atlas and multi-parcellation case can
improve the prediction results and the confidence of the pre-
diction model. The same conclusion was drawn above based
on the Brier scores, which confirm their robustness and may
be relevant for the application of the discussed modelling and
prediction approaches to clinical data and disease diagnosis.

Discussion

The main objective of this study is to effectively apply whole-
brain dynamical modelling and the derived simulated connec-
tomes to Parkinson’s disease classification. Whole-brain simu-
lations allow us to explore various regimes of brain dynamics
corresponding to different values of free model parameters.
To extract features from the simulated results, it is essential
to evaluate which model fitting is appropriate. The detected
optimal model parameters can differ when we use different
model fitting approaches. In other words, whole-brain dy-
namics with proper model parameters can disclose group dif-
ferences between Parkinson’s disease and HC subjects and
provide a way to extract effective features for Parkinson’s dis-
ease classification. In this study, we introduced the behaviour-
al model fitting approach and showed that it captured
differences between Parkinson’s disease and HC better than
the conventionally used neuroimaging model fitting ap-
proach. Then, we applied it to Parkinson’s disease classifica-
tion. Based on our findings, we can conclude that using
proper model validation in whole-brain dynamical modelling
may provide effective features to machine learning and pro-
vide information complementary to empirical features.

In addition to whole-brain dynamical modelling for classi-
fication, data processing is also important because, as we
have shown, different data processing influences model
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Table 3 Comparisons between goodness-of-fit values of the considered filtering conditions (Bonferroni corrected
P-values of the Wilcoxon signed-rank two-tail test) and the corresponding effect sizes by Rosenthal formula®'

P (effect size) NF versus BF NF versus LF

NF versus HF

BF versus LF BF versus HF LF versus HF

Schaefer 0.000 (0.70) 0.000 (0.84) 0.000 (0.86) 0.000 (0.81) 0.000 (0.70) 0.998 (0.04)
Desikan—Killiany 0.000 (0.66) 0.000 (0.77) 0.000 (0.85) 0.000 (0.69) 0.000 (0.70) 0.838 (0.10)
Bold fonts indicate that the goodness-of-fit values are significantly different between filtering conditions.
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Figure 7 Performance of the trained prediction model regarding the predicted probabilities for individual subjects. (Top row)
Plots of the probability calibrations from 5800 predictions for (A) the Schaefer atlas, (B) Desikan—Killiany atlas, and (C) multiple atlases, where the
fraction of true positives is plotted versus the probability of them predicted by the trained model for individual subjects. The sizes of the circles
indicate the number of individual subject tests for the three considered feature conditions as indicated in the legend in plot (A). (D) Histograms of
the predicted probabilities (5800 predictions) for each feature condition, as indicated in the legend. The case of the LF band-pass filtering condition
is illustrated in plots (A—D). (E) Table of the Brier scores (mean-squared error to the correct classes) for all considered filtering and feature
conditions. (F) Tables of the Wasserstein distances between distributions of predicted probabilities and a uniform distribution for all conditions.
Desikan, Desikan—Killiany; Emp., empirical features; Sim., simulated features; All, empirical and simulated features.

validation.®*%3>”? In this respect, we investigated how tem-
poral filtering of BOLD signals and brain parcellation influ-
ence empirical and simulated results regarding model fitting,
group difference and prediction performance. Based on our
results, we can conclude that the resting-state whole-brain si-
mulations with appropriate data processing and model valid-
ation reflect personal traits of individual subjects, which may
contribute to disease classification based on the whole-brain
connectivity relationships with potential relevance in
medicine.

Effect of temporal filtering on model
fitting and prediction

The effect of temporal filtering on functional MRI has been
the focus of neuroimaging research for a long time.5™%3
One related study considered different temporal filters for
MRI data processing and reported distinguishable BOLD
dynamics in task-driven and resting-state brain activity

between low and high-frequency band-pass filtering.®
Furthermore, temporal filtering can influence the classifica-
tion performance for patients with Alzheimer’s disease as
compared across several low- and high-band-pass filtering
conditions.?® In this study, we found that the neuroimaging
model fitting resulted in significantly different distributions
of the maximal GoF values for individual subjects under dif-
ferent filtering conditions. Furthermore, the empirical
structure-function connectivity relationship and the max-
imal GoF values of the neuroimaging model fitting were di-
minishing for the narrower filtering bands (Supplementary
Fig. 4).

Another study investigated Parkinson’s disease classifica-
tion via machine learning on brain networks derived from
the empirical resting-state FC with a high pass temporal fil-
tering (> 0.01 Hz) of BOLD signals,*® which corresponds
to the case of the NF condition in our study. According to
our prediction results, we suggest to consider the low-
frequency band-pass filtering, i.e. the LF condition, which
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can improve the differentiation and classification of
Parkinson’s disease also for the case when only empirical fea-
tures are used.

An appropriate selection of the filtering condition (broad-
or narrow-, high- or low-frequency band) appears to be
important for the prediction performance, as reflected by
several integrative measures considered in this study. In par-
ticular, a detailed evaluation of individual tests indicates that
selecting a proper band-pass filter for the empirical and simu-
lated BOLD signals can improve the prediction performance
(Figs. 6 and 7).

In a broader perspective, changing parameter values or al-
gorithms in a data processing pipeline can affect empirical re-
sults such as structural and functional connectivities, which
in turn influence simulation results. In previous studies,
for instance, we reported the impact of data processing
on simulated results by whole-brain dynamical modelling:
WBT densities,® region granularities,® parcellation
schemes,®>%”?%% whole-brain simulation models®’*** and
model fitting approaches.®?° In the current study, we
showed that applying temporal filtering to BOLD signals
and using different brain parcellations and their combina-
tions, as well as the neuroimaging and behavioural types of
model fitting, can impact empirical and simulated results
and their classification performance. Subsequently, we there-
fore investigated the impact of the considered parameter con-
ditions of the data processing and model simulation on
classification performance. By doing so, the conditional pipe-
line, which gives the highest performance, can be considered
as contributing to the extent of the data and model personal-
ization, which is important for subject classification based on
clinical or behavioural data and their simulations.

Under the assumption that the resting-state brain activity is
governed by a complex dynamical system, we can interpret
the optimal model parameters of the neuroimaging model fit-
ting as parameters of that system with potential neuroscien-
tific/physical meaning. Since the optimal parameters were
determined by distinct model validations, they can differ
when a given model fitting approach changes as observed
in our previous studies®*° and demonstrated by the results
in the current study (Fig. 4C-D). Furthermore, the parcella-
tions also impact on the locations of the optimal parameters.
For instance, the optimal global coupling parameters derived
from the behavioural model fitting suggest weaker optimal
couplings than those from the neuroimaging model fitting
for the Schaefer atlas (Fig. 4C). On the other hand, the situ-
ation for the Desikan—Killiany atlas is opposite (Fig. 4D).
In our model, we used the reconstructed PLs of the tracto-
graphy streamlines in the white matter, which approximate
the actual lengths of the anatomical axonal connections in
the brain. The considered model simulates the electrical ac-
tivity of the excitatory and inhibitory neuronal populations
in the brain regions, as reflected by the dynamics of the
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respective PSP signals. We can thus evaluate and interpret
the optimal model parameters for the propagation of the si-
mulated electrical signals (EPSP) along the brain pathways.
We, in particular, found that the neuroimaging model fitting
resulted in the optimal delay of the signal propagation in the
electrophysiologically plausible range”® (Fig. 3D and H).
This confirms the applicability of the used dynamical model
for simulating brain dynamics. Furthermore, the optimal de-
lay of the behavioural model fitting obtained from repeated
subsampling for different subject configurations is located
in the same biologically reasonable range as well, which va-
lidates the behavioural model fit (Fig. 4C-D). Further para-
meters of the considered model and the simulated electrical
PSP signals (Table 2) may have biologically plausible inter-
pretations and ranges. Here we may mention, for example,
the excitation-inhibition balance of the intra-regional coup-
ling or the time constants responsible for controlling slow or
fast oscillations of electrical neuronal activity.

In Parkinson’s disease research, a neural model generating
such oscillations in a certain frequency range is essential to
engaging the pathological neural activity during rest.
Previous studies reported that the resting-state cortico-
cortical FC of Parkinson’s disease patients changed in the
8-10 Hz range (in the alpha-rhythm) for early-stage and
moderately advanced Parkinson’s disease patients® and
cortico-cortical coupling for oscillations between 10
and 35 Hz correlated with the severity of Parkinson’s disease
in the electroencephalogram study.®® High oscillatory syn-
chrony in the basal ganglia at frequencies of 8-35 Hz was
also associated with Parkinson’s disease based on spectral
power changes between off- and on-drug (levodopa
dose).®” With this respect, we may also investigate the rela-
tionship between frequencies of neural activity and models
by varying the scale factor R of the current whole-brain dy-
namical model.

The neuroimaging model fitting is a well-established model
validation as though maximizing GoF values of the model
is the main objective of the model validation. Nevertheless,
brain dynamics for non-optimal model parameters may
also provide additional useful properties. They can contrib-
ute to the application of the dynamical models to analyse
the brain and behaviour. In particular, brain modelling
with virtual brains or iz silico models for brain abnormalities
has been used for clinical purposes.>*™>® To this end, we ex-
plored the parameter landscapes of GoF values and searched
for parameter points that provide optimal GoF values to ef-
fectively answer the current research question. As we re-
ported in the results, there exist hotspots of the densely
located optimal model parameters, where either neuroima-
ging or behavioural model fitting is the most effective, al-
though these hotspots may not coincide (Fig. 4C-D, the
distributions in blue and orange). This should be linked to
the definition of the atlas and, hence, regions. We also ob-
served an impact of brain parcellations on the distributions
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of the optimal parameters.®>%"?%% A detailed investigation
of this phenomenon will require considering more parcella-
tion schemes to systematically describe their influence on
the modelling results, as we already initiated in our previous
studies.®?%7?8% Therefore, a systematic exploration of par-
ameter landscapes allows us to find proper model parameters
for a given purpose, which may be different in locations and
other properties from one modelling condition and research
question to another. Accordingly, we conclude that explor-
ing parameter landscapes of the whole-brain dynamical
models using behavioural/phenotypical measures might re-
veal optimal model parameters best suited for research goals
related to inter-individual wvariability and prediction
approaches.

In this study, we did not aim at obtaining the highest pre-
diction accuracy, which might have required extensive
testing of many simulation and prediction conditions, fea-
ture spaces, and learning algorithms. Nevertheless, the ob-
tained prediction performance (65.2% as median accuracy
using empirical features) is comparable with that reported,
for example, in the study of Plaschke et al.>® which had
a median accuracy of 65.5% over considered brain
networks.

When we considered the simulated data for Parkinson’s
disease classification, the features from the neuroimaging
model fitting had much lower performance in most consid-
ered cases as compared with the features from the behaviour-
al model fitting (Supplementary Fig. 8). Therefore, we
suggest that the behavioural model fitting can be used to val-
idate the model against behavioural data for probing the si-
mulated whole-brain dynamics to improve the model
correspondence to phenotypical characteristics of subjects
and prediction results. Such an approach may be of crucial
importance in clinical research and the reported results
showed promising confirmations.

In this study, we also explored the impact of a few data
processing choices and model simulation on the differenti-
ation and prediction performance. For example, composing
predictive features including empirical and simulated con-
nectomes from multiple brain atlases can provide comple-
mentary features leading to even better prediction
performance (Supplementary Fig. 7). We further showed
that also filtering conditions of empirical and simulated
BOLD signals can play an important role in model validation
and subject classification, where in particular, prediction
specificity may vary significantly across filtering conditions
as well as the number of false positives of the trained model
can be reduced by appropriate filtering (Fig. 6).

Modern neuroimaging research dedicated to prediction
analysis and based on machine learning techniques has
shown enhanced performance for clinical data and in radi-
ology in particular.®”*® Those predictive results and devel-
oped approaches have faced the issue of translation of their
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analysis and interpretation of the obtained outcomes to clin-
ical application.?” In this respect, the current study illu-
strated the characteristics of individual prediction
probabilities to bridge the gap between modelling and pre-
diction results and their translation for diagnosis in clinical
research. The analysis included in the present study explored
the calibration of the predicted probabilities for individual
subjects and provided additional reliable information for
the interpretation of the classification results. This can be
achieved when the prediction probabilities are considered
at the level of individual subjects, for example, when new,
unseen patients are tested for diagnostic purposes.
Furthermore, the discussed probability analysis delivered
additional evidence that the whole-brain simulation results
can be useful for complementing empirical data for predic-
tion and classification in clinical research. Consequently, in-
volving the whole-brain dynamical models in the training of
machine learning models can improve individual prediction,
which can potentially help a clinician better gauge a diagno-
sis during the examination of individual patients.

For further studies, other phenotypical properties can be
used for the behavioural model fitting, for instance, age or
sex. Of course, cognitive or clinical scores such as the
Montreal Cognitive Assessment, Mattis dementia rating
scales and the unified Parkinson’s disease rating scales are
also applicable. The suggested approach to behavioural
model fitting is similar to the brain mapping of various be-
havioural or phenotypic measures on the cortical surface
and can thus be generalized. In other words, we can map
the parameter space using cognitive or clinical scores, which
can be referred to as phenotypical mapping on the model
parameter space like the behavioural model fitting that we
introduced in the present study.

Summary

We simulated whole-brain resting-state dynamics and calcu-
lated the relationships between structural and functional em-
pirical and simulated connectomes for a variety of conditions
and data processing, options including brain parcellation
and temporal filtering of BOLD signals. We introduced the
behavioural model fitting paradigm and found that the ensu-
ing modelling results can lead to enhanced differentiation of
disease and control groups and improved classification of
Parkinsonian patients by machine learning approaches.
Thus, the involvement of simulated connectomes, especially,
in combination with empirical ones, is of great advantage,
where the individual probabilities approach the ideal case
as compared with the purely empirical feature space. We
showed that band-pass filtering in the low-frequency band
can have a beneficial effect on the prediction performance.
On the other hand, the high-frequencies of the empirical
and simulated BOLD signals should be considered with care
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and may not immediately be recommended for subject-level
classification. In addition, we demonstrated that the predic-
tion performance can differ for different or multiple brain par-
cellation schemes. Our findings can contribute to a better
understanding of empirical and simulated whole-brain dy-
namics and their relationship to disease. They further suggest
an avenue for application of the results of whole-brain simu-
lations for cognitive or clinical investigation of inter-
individual differences and disease diagnosis.
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