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Whole-brain dynamical modelling  
for classification of Parkinson’s disease

Kyesam Jung,1,2 Esther Florin,3 Kaustubh R. Patil,1,2 Julian Caspers,4 

Christian Rubbert,4 Simon B. Eickhoff1,2 and Oleksandr V. Popovych1,2

Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and model
ling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated 
whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease against healthy controls in light 
of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived 
by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and 
controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented 
a model validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can 
be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demon
strated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation 
results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results, 
where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space 
of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction 
performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-indi
vidual research and its clinical application.
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Graphical Abstract
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Simulated features from the whole-brain modeling improve

A low-frequency band-pass filtering (from 0.01 to 0.05 Hz) for 
blood oxygenation level-dependent (BOLD) signals is advisable.

Simulated data from multiple brain parcellation schemes provide 
complementary features for patient classification.
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Introduction
For decades, large-scale whole-brain connectivity acquired 
from non-invasive in-vivo MRI has actively been used to 
study the human brain as an integrative complex system.1

Accordingly, anatomical (or structural) and functional con
nectivities between brain regions have been used. Previous 
studies have shown that the structural architecture shapes 
the temporal synchronization between the blood oxygen
ation level-dependent (BOLD) signals in selected networks, 
for instance the default mode network.2,3 However, the 
structure-function correspondence is not high for whole- 
brain connectivity.4–6 The correspondences between the 
brain connectomes of the same and different subjects, sam
ples or data modalities7,8 have been considered to investigate 
the inter-individual differences9 or diagnostic classification 
between healthy controls (HCs) and patients.4,10–12

Connectivity relationships are also commonly used 
when brain dynamics are modelled by mathematical whole- 
brain dynamical models. In particular, finding the strongest 

correspondence (the highest similarity) between empirical 
functional connectivity (eFC) and simulated functional con
nectivity (sFC) has been used for model validation.13–15

Such a correspondence of the simulated data to the empirical 
data may undergo qualitative changes when parameters of a 
given model vary and the validation procedure consists in 
finding the most pronounced agreement between the data 
and the model fitted by searching for optimal parameter 
points.

Previous studies utilizing the discussed whole-brain model
ling showed that the employed modelling approach was applic
able to clinical research. The variability of the model parameters 
between diseased and healthy states has been investigated for 
brain disorders including schizophrenia,16–19 Alzheimer’s dis
ease,20 Parkinson’s disease21,22 and stroke patients.23 For in
stance, Saenger et al.22 showed that therapeutic deep brain 
stimulation in Parkinson’s disease can be modelled by the nor
mal form of a Hopf bifurcation model.24 Detailed simulations 
of neuronal dynamics may also provide a way to test prognostic 
outcomes in silico throughout virtual operations and optimize 
the setup and parameters of therapeutic interventions.25–28

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/1/fcac331/6905429 by guest on 29 D

ecem
ber 2022



Brain modelling for Parkinson’s disease                                                                           BRAIN COMMUNICATIONS 2023: Page 3 of 19 | 3

There are, however, no well-established standards for 
model validation against empirical data. Several fitting mo
dalities have been suggested in the literature, including the 
fitting of the grand-averaged empirical and simulated FC ma
trices, fitting the dynamical FCs, maximization of the meta
stability and structure-functional model fitting.6,13,24,29,30

On that account, it is necessary to investigate, which param
eter points of a given dynamical mode and which model fitting 
modalities are the most suitable to answer a given research 
question by the modelling approach. For example, it was ob
served that the distributions of the optimal model parameters 
differ when using only functional or structure-functional 
model fitting and may lead to subject stratifications showing 
different model fitting values and optimal parameter points.30

It is also well known that varying parameters of MRI data 
processing influence the empirical structural and functional 
connectomes and their analyses.31–34 This subsequently af
fects model validation.6,30,35 Therefore, the impact of data 
processing on the results of model validation should be care
fully considered, especially in clinical applications.

In Parkinson’s disease research, the eFC of the resting- 
state networks was already being used in machine learning 
approaches to subject classification.36,37 When sFC is in
volved, it is essential to extract relevant features for 
Parkinson’s disease classification from simulation results 
via searching in a given model parameter space for the opti
mal model. To do this, we considered two aspects of para
meters regarding dynamical models and data processing. 
First, we find the model parameters that reveal the most 
prominent differences in connectome correspondence be
tween Parkinson’s disease and HC. Such an approach can 
be used for model validation. Here, we aim at a diagnostic 
classification of patients from healthy subjects, where the 
model fitting to behavioural (phenotypical) data might be 
an alternative approach for model validation. We attempt 
to provide a way to reveal and maximize the group difference 
in simulated results by varying the parameters of dynamical 
models. For instance, the disease status of the subjects can be 
used for behavioural fitting, as we show in this study. 
Second, we consider different temporal filters of BOLD sig
nals, which are known to influence FC properties.38,39 In 
particular, the altered frequency bands were found to retain 
Parkinson’s disease-related neural changes.40 The frequen
cies of empirical BOLD signals, when included in the whole- 
brain mathematical models, may influence the optimal 
model parameters and the quality of the model fitting.6,30

In this context, investigation of the impact of temporal filter
ing conditions on the model validation in Parkinson’s disease 
data is important.

In the current study, we advance the classification of clin
ical data by application of machine learning to empirical and 
simulated connectomes. The functional connectomes were 
calculated from empirical and simulated BOLD signals, re
spectively, filtered in broad-, low- and high-frequency bands 
for two different brain parcellations as given by the 
Schaefer41 and Desikan–Killiany42 brain atlases. As com
pared with purely empirical studies, we take the next step 

based on the two aspects of parameters for model fitting mo
dality and data processing and employ the simulated data to 
improve the prediction results in a machine learning setting.

The current study employs whole-brain dynamical model
ling of the resting-state functional MRI data based on the 
Jansen–Rit model type of interacting excitatory and inhibi
tory neuronal populations.43,44 The simulated FCs generated 
for the optimal model parameters based on model fitting mo
dalities were used to calculate the connectome relationships 
(Pearson’s correlation) with empirical structural and func
tional connectivities. We also introduced a simple but effect
ive method for model validation against behavioural data 
more suitable for differentiation between patients with 
Parkinson’s disease and HCs than the conventionally used 
model fit to neuroimaging data. Consequently, the persona
lized features derived from the connectome relationships 
were used in this study for classification of Parkinson’s dis
ease and HC using machine learning. We in particular 
show that complementing empirical data with simulated 
FC can improve the prediction performance for unseen sub
jects. Our results suggest that the personalized whole-brain 
models can serve as an additional source of information rele
vant for disease diagnosis and possibly for their treatment as 
well.

Materials and methods
We performed three main steps to obtain the whole-brain 
connectivities eFC, eSC (empirical streamline counts), ePL 
(empirical average path length) and sFC. Figure 1 schematic
ally illustrates the data processing and simulation workflow. 
We applied four temporal filtering conditions to empirical 
and simulated resting-state BOLD signals. Subsequently, 
we considered three types of connectivity relationship corre
sponding to the correlation between eFC and eSC, the correl
ation between eSC and sFC and the correlation between eFC 
and sFC. Since sFC was calculated by varying the two free 
model parameters of global coupling and global delay, the 
correlations involving sFC change, as illustrated by the 
eFC-sFC correlation landscape in the parameter space in 
Fig. 1 (the rightmost colour plot). We used these three con
nectivity relationships as features for the Parkinson’s disease 
classification via a machine learning approach. To this end, 
we trained Parkinson’s disease classifiers and evaluated their 
performance based on prediction probabilities obtained on 
unseen subjects.

Subjects and demography
The three considered whole-brain connectivities (eFC, eSC 
and sFC) were calculated for 51 (30 males) HC and 65 (45 
males) patients with Parkinson’s disease, see Table 1 for 
the demography. Patients and controls were included in an 
MRI data pool acquired at the University Hospital 
Düsseldorf, Germany, which was also used in several recent 
studies,36,37,45,46 where additional details about the data 
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can be found. All patients were diagnosed with Parkinson’s 
disease by an experienced movement disorder specialist. All 
HC subjects had no history of any neurological or psychi
atric disease and no abnormalities were detected in cranial 
MRI. The ages of 116 subjects (mean: 58.9 years and stand
ard deviation: 10.3 years) are in a normal distribution (the 
null hypothesis was not rejected by a χ2 goodness-of-fit test 
with P = 0.15). The age of patients was significantly higher 

than that of controls (Wilcoxon rank-sum two-tail test). 
The age of male patients was significantly higher than 
that of male controls, but the age of females was not from 
distributions with different medians. There was no age dif
ference between females and males (Table 1). The study was 
approved by the local ethics committee and performed in 
accordance with the Declaration of Helsinki. All subjects 
provided written informed consent prior to study inclusion.

Figure 1 Data processing and simulation overview. First (upper box), brain parcellations in the native space of T1w were prepared and 
applied to the processed functional MRI data, BOLD signals were extracted from the corresponding brain regions and filtered according to four 
temporal filtering conditions (right bottom box) and four respective eFCs were calculated. Second (middle box), the parcellations were also used 
for the calculation of the structural connectivity by extracting streamlines from the WBT reconstructed using DWIs, where the number and length 
of streamlines connecting any two brain regions were collected into matrices of eSC and ePL. Third (lower box), the structural connectome (eSC 
and ePL) was used to build a brain network for the whole-brain modelling that simulates BOLD signals, which were filtered according to the 
considered filtering conditions (right bottom box) and used to calculate sFC. Subsequently, we calculated connectivity relationships (Pearson’s 
correlation) using these three connectivity matrices: (i) corr (eFC, eSC); (ii) corr (sFC, eSC); and (ii) corr (eFC, sFC). Model parameters for global 
coupling and global delay were varied to validate the model against empirical data. In particular, the correspondence (correlation) between eSC 
and eFC and sFC was calculated for each parameter point, resulting in similarity landscapes in the model parameter space, see the example of the 
relationship between eFC and sFC in the rightmost colour plot. The most pronounced correspondence (correlation) between the empirical and 
simulated connectomes was selected, together with the respective optimal model parameters, as a result of the neuroimaging model fitting for 
further analysis.

Table 1 Demography of subjects included in the study

Groups Mean (standard deviation) years Statistical tests P-values

All subjects χ2 goodness-of-fit test
All 58.93 (10.25) 116 subjects 0.149

HC Patients Wilcoxon rank-sum two-tail test
All 55.02 (9.69) 62.00 (9.62) 51 HC versus 65 patients 0.000
Female 56.52 (9.40) 60.80 (8.96) 21 HC versus 20 patients 0.201
Male 53.97 (9.74) 62.53 (9.85) 30 HC versus 45 patients 0.001

Females Males Wilcoxon rank-sum two-tail test
All 58.61 (9.43) 59.11 (10.67) 41 females versus 75 males 0.751
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MRI acquisition
Structural and functional MRI data were acquired using a 3 T 
scanner (Siemens Trio). A structural brain image was acquired 
using a 3D T1-weighted image (T1w) sequence (TR = 2.3 s, 
TE = 2.96 ms, TI = 900 ms, flip-angle = 9°, field-of-view = 
240 × 256 mm2 in sagittal, the number of slices = 160, voxel 
dimension = 240 × 256 × 160, voxel size = 1.0 × 1.0 × 1.1 
mm3). Diffusion-weighted images (DWI) comprised a single 
non-weighted (B0) image and weighted (B = 1000 s/mm2) 
images with 64 directions (TR = 6.7 s, TE = 81 ms, phase en
coding: anterior to posterior, field-of-view = 216 × 216 mm2 

in axial, the number of slices = 55, voxel dimension = 90 × 
90 × 55, voxel size = 2.4 × 2.4 × 2.4 mm3). Resting-state func
tional MRI was obtained using an echo-planar imaging se
quence during 663 s (TR = 2.21 s, TE = 30 ms, field-of-view 
= 200 × 200 mm2 in axial, the number of slices = 36, voxel di
mension = 64 × 64 × 36, voxel size = 3.125 × 3.125 × 3.565 
mm3). To prevent the distraction of streamline tracking, arte
fact volumes of DWI were removed from the data based on 
evaluation by two raters.

Preprocessing of MRI
For the personalized data processing, we developed a contain
erized in-house pipeline to process structural and functional 
MRI in the native spaces. The pipeline consists of five mod
ules: preprocessing of structural MRI (T1w and DWI), whole- 
brain tractography (WBT) calculation, atlas transformation, 
reconstruction of structural connectivity (eSC and ePL) and 
preprocessing of functional MRI. The pipeline comprises 
Freesurfer,47 FSL,48 ANTs,49 MRtrix350 and AFNI.51 It is 
publicly available (https://jugit.fz-juelich.de/inm7/public/vbc- 
mri-pipeline).

The preprocessing module of structural MRI performed 
the following steps: bias-field correction for T1w, alignment 
of anterior-posterior commissures of T1w, recon-all by 
Freesurfer, removing the Gibbs ringing artefacts of DWIs, 
bias-field correction for DWIs, corrections of head motion, 
b-vector rotations and eddy distortion of DWIs and 
co-registration between averaged DWI and T1w. This mod
ule segmented subcortical areas based on voxel intensities 
of the T1w. It also prepared labelling annotations using a 
brain atlas, for which a classifier was available from the lit
erature. The annotation can also be created based on a sub
ject cohort by capturing region data either drawn by 
neuroanatomists or according to dedicated algorithms.52

The WBT calculation module included only MRtrix3 
functions. They estimated response functions for spherical 
deconvolution using the constrained deconvolution algo
rithm.53 Fibre oriented distributions (FODs) were esti
mated from the DWIs using spherical deconvolution, and 
the WBT was created through the fibre tracking by the 
second-order integration over the FOD by a probabilistic 
algorithm.54 In the latter step, we used 10 million total 
streamlines for the WBT density. The tracking parameters 
of the tckgen function were set as in the previous study:30

step size = 0.625 mm, angle = 45°, minimal length = 2.5 mm, 
maximal length = 250 mm, FOD amplitude for terminating 
tract = 0.06, maximum attempts per seed = 50, the maximum 
number of sampling trials = 1000 and downsampling = 3 
(FOD samples per steps−1).

The atlas transformation module annotated labels using a 
classifier to parcel cortical regions in the native T1w space using 
Freesurfer. In the present study, we applied two atlas classifiers 
for brain parcellations, the Schaefer atlas with 100 parcels41

and the Desikan–Killiany atlas with 68 parcels.42 Both atlases 
provide cortical parcellations, where the former is based on 
functional MRI data, while the latter is labelled by gyral-based 
anatomical parcellation. After this, the subcortical areas seg
mented by the preprocessing module were included and com
bined with the labelled cortical parcels. Finally, the pipeline 
transformed the labelled image (cortical parcels and subcortical 
regions) from the T1w to DWI native spaces.

The reconstruction module calculated the matrices of the 
streamline counts (SCs) and the matrices of the average 
path lengths (PLs) of the streamlines extracted between any 
two parcellated brain regions from the calculated WBT 
with the transformed, labelled image in the DWI space.

The preprocessing module of functional MRI performed 
slice time correction, head motion correction, re-slicing in 
a 2 mm iso-cubic voxel space, intensity normalization, de- 
trending with filtering of very slow fluctuations out (high 
pass), co-registration to the T1w and calculation of regres
sors for the white matter, cerebrospinal fluid (CSF) and brain 
global signals as well as for the head motion. The pipeline 
also transformed the labelled image of the brain parcellation 
generated in the native T1w space to the functional MRI na
tive space. Finally, we performed a nuisance regression with 
the prepared regressors (white matter, CSF and the brain glo
bal signals, as well as head motions).

Post-processing of functional MRI
After preprocessing of MRI, we extracted mean BOLD sig
nals based on the annotated atlas labels and applied three 
temporal band-pass filtering conditions in the frequency 
ranges of (0.01,0.1) Hz (broad-frequency band; BF), 
(0.01,0.05) Hz (low-frequency band; LF) and (0.05,0.1) 
Hz (high-frequency band; HF). Therefore, four filtering con
ditions were considered: no filtering (NF), BF, LF and HF. 
The filtering was done using a script in the Python program
ming language (version 3.8, Python Software Foundation, 
https://www.python.org/) using the SciPy (version 1.5) signal 
processing module55 and NumPy56 (version 1.19) for the 
temporal band-pass filtering. We used the Butterworth digit
al filter of order 6, scipy.signal.butter.

Whole-brain model
Convolution-based two-population model for 
electrical signals
The whole-brain resting-state dynamics considered in this 
study was simulated by a system of N coupled neuronal 
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models representing the mean brain regional activity. 
Each region contains two populations for each neuronal 
type (excitatory and inhibitory) that interact with each 
other via postsynaptic potentials (PSPs).43 The considered 
convolution-based model is of the Jansen–Rit type44,57 and 
simulates the PSP signals involving other brain regions that 
interact with time delay in coupling according to the calcu
lated structural connectivity, i.e. SC and PL matrices. The 
following set of differential equations describes the mean dy
namics of the excitatory and inhibitory PSPs of region n = 1, 
2, …, N,

ẏn,e(t) = zn,e(t), (1) 

ẏn,i(t) = zn,i(t), (2) 

żn,e(t) = Pn,e(t) − 2aRnzn,e(t) − a2R2
nyn,e(t) + ηn,e, (3) 

żn,i(t) = Pn,i(t) − 2bRnzn,i(t) − b2R2
nyn,i(t) + ηn,i,

n = 1, 2, . . . , N.
(4) 

Here, zn,e, zn,i, yn,e and yn,i are the excitatory postsynaptic 
current, the inhibitory postsynaptic current, the excitatory 
PSP (EPSP) and the inhibitory PSP (IPSP) of the brain region 
n, respectively, where the subscripts e and i stand for excita
tory and inhibitory, accordingly. The model (1)–(4) is a sys
tem of driven harmonic oscillators in a critical damping 
regime, where the system quickly returns to its steady state 
after perturbation without undershooting. Parameters a 
and b represent the reciprocal of the time constants of the 
PSP kernel for the two populations for EPSP and IPSP, re
spectively. ηn,e and ηn,i are independent noise sampled 
from a random uniform distribution between −1.5 and 
1.5 V/s2. For frequency of oscillations, we also introduced 
a scaling factor R. By increasing R, the spectral power of 
the PSP signals shifts to higher frequencies. Perturbation 
Pn,e drives EPSP oscillations regarding input signals 
from other regions, i.e. it models the coupling between 
the network nodes/brain regions and Pn,i perturbs IPSP 
oscillations by the input from the excitatory population in 
the same region n,

Pn,e(t) = AaR2
nσe

C
N

􏽘N

m≠n

Cnmym,e(t − τnm) − Ceiyn,i(t)

􏼠 􏼡

, (5) 

Pn,i(t) = BbR2
nσi(Cieyn,e(t)), n = 1, 2, · · · , N. (6) 

A and B are the maximum amplitudes of the PSP kernels for 
EPSP and IPSP, respectively. N is the total number of brain 
regions/network nodes for the whole-brain model. In 
Equation (5), C is a global coupling parameter, which scales 
the couplings throughout the whole-brain network. Cnm is 
the strength of the individual coupling from region m to re
gion n, which is realized via weighting the EPSP signal of the 
m-th network node ym,e considered with time delay τnm. 
Parameter Cei weights an input coming from the inhibitory 
population of the same brain region, i.e. IPSP yn,i. The 

individual time delays and coupling strengths between re
gions m and n can be estimated from the empirical data as

τnm = τglobalLnm, Cnm =
wnm

W
, (7) 

where the averaged path length Lnm (from the matrix PL) of 
the reconstructed streamlines between regions n and m is 
scaled by a global delay parameter τglobal. Cnm in 
Equation (7) calculates an individual coupling strength by 
taking into account the SC matrix, where the number of 
streamlines wnm between the two regions was normalized 
by an averaged number of streamlines W calculated over 
all connections except for the self-connections. As follows 
from Equation (5), the coupling between brain regions is 
realized between the excitatory populations, where the de
layed EPSP signals from the other brain regions composed 
the coupling term. Together with the intra-regional coup
ling by the IPSP signal from the inhibitory population, the 
total PSP input to the excitatory population is converted 
by a nonlinear sigmoid function σe(v) given in Equation (8) be
low to an averaged firing density. The inhibitory population in 
region n received an input EPSP signal weighted by parameter 
Cie from the excitatory population of the same region only, 
which was again converted to an averaged firing density by 
the following sigmoid function σi(v):

σe(v) =
Fe

1 + er(v0−v) , σi(v) =
Fi

1 + er(v0−v) . (8) 

In Equation (8) of the mentioned sigmoid functions, the par
ameter r is a slope, v0 is a half of the maximal neural activity 
and parameters Fe and Fi are the maximal firing densities of 
the excitatory and inhibitory populations, respectively. 
Parameter values of the considered two-population model 
Equations (1)–(8) are given in Table 2.

Simulated BOLD signals
We calculated the regional BOLD signals using the corre
sponding EPSP signals simulated by the electrical model 
Equations (1)–(8) introduced in the previous section. 
Several examples of the time courses of the EPSP signals gen
erated by the considered model and their power spectra are 
illustrated in Supplementary Fig. 1. Neurovascular coupling 
and hemodynamic responses constitute the process reflected 
in the Balloon–Windkessel (BW) model that was utilized to 
convert the simulated neural activity to BOLD signals,58–60

see details in the Supplementary material.

Model validation: neuroimaging and 
behavioural model fitting
In this study, we considered two model fitting approaches: 
neuroimaging model fitting and behavioural model fitting. 
The former is well known in the literature and consists of val
idation of the model via comparing simulated data against 
neuroimaging empirical data. In this study, the Pearson’s 
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correlation coefficient between eFC and sFC (comparing the 
upper triangle without self-connections of the connectivity 
matrices) was calculated and denoted as goodness-of-fit 
(GoF) values. Searching for the maximal GoF in a given par
ameter space is a well-established approach for model valid
ation in whole-brain modelling studies.13–15 In this study, we 
optimized the coupling and delay model parameters to maxi
mize the GoF value on a parameter grid of 64 × 43 points (64 
global couplings and 43 global delays) densely covering the 
parameter plane, respectively. In addition, we also consid
ered the connectivity relationship between eSC and sFC as 
for separate neuroimaging model fitting. In consequence, 
two types of neuroimaging model fitting (eFC versus sFC 
and eSC versus sFC) were used in this study. As this proced
ure fits the model to the connectivity derived from the empir
ical neuroimaging data, we term it neuroimaging model 
fitting.

We also introduce behavioural model fitting as a proced
ure to validate a model against behavioural data, for ex
ample, optimizing the model to reflect some behavioural 
(phenotypical) properties to the best possible extent. In this 
study, we optimized the parameters of the model to max
imally differentiate between Parkinson’s disease patients 
and HC subjects. For this, we calculated the effect size based 
on the z-statistics of the Wilcoxon rank-sum two-tail test as 
given by the Rosenthal formula, i.e. the normal z-statistics 
divided by the square root of the number of observations61

of the difference between the (neuroimaging) GoF values of 
the HC and Parkinson’s disease subject groups. The effect 
size was calculated for every parameter point in the consid
ered parameter space of 64 × 43 grid and represented as a 
parameter map. In this way we obtained a parameter land
scape of the group differences and were able to investigate 
the differentiation of GoF values of Parkinson’s disease pa
tients from those of HC subjects. This parameter landscape 
reflects the relation of the model GoF to the behavioural 

data (in this study, to the differentiation based on clinical 
measures), and we thus used this approach as behavioural 
model fitting. To evaluate the parameter areas of significant 
group difference, we performed the Wilcoxon rank-sum 
two-tail test and obtained a corresponding P-value parameter 
map. Due to the multiple comparisons over the parameter 
points, we applied the random-field thresholding scheme62,63

using a 2D Gaussian kernel smoothing. Subsequently, we 
obtained a Z-score map and thresholded it to retain statistic
ally significant parameter areas (alpha = 0.05). Finally, we 
searched for the optimal model parameters within the signifi
cant parameter areas corresponding to the maximal effect 
size. We considered two connectivity relationships (eFC 
versus sFC and eSC versus sFC) for the behavioural model 
fitting.

Random sampling for optimal 
parameters
We performed a random sampling to test the stability of the 
optimal parameter points for the behavioural model fitting. 
To do this, the stability of the results was assessed by sex- 
balanced stratified subsampling. After a random sampling 
of 72 subjects (36 HC subjects and 36 Parkinson’s disease 
patients) out of 116 subjects, we applied the behavioural 
model fitting to the sampled subjects and found optimal 
parameters corresponding to the largest effect size. The 
subsampling and the corresponding calculations were re
peated 1000 times.

Regularized (least absolute shrinkage 
and selection operator) logistic 
regression
The current task is to train a binary classifier (Parkinson’s 
disease versus HC) using 10 features (five connectivity 

Table 2 Parameter values of the electrical model and the BW model

Electrical model Variables Values BW model Variables Values

Max. sigmoid (excitatory) Fe 100 s−1 Echo time TE 30 ms
Reciprocal of the time constant of the EPSP kernel a 100a s−1 Mean-transit-time tMTT 2b s
Max. EPSP A 3.25a mV Net oxygen extraction fraction at rest E0 0.4b

Max. sigmoid (inhibitory) Fi 50 s−1 Venous blood volume fraction V0 4b %
Reciprocal of the time constant of the IPSP kernel b 50a s−1 Frequency offset for 3 T ϑ0 80.6b s−1

Max. IPSP B 22a mV Ratio of intra/extra-vascular signal ε 0.3b

Slope of sigmoid r 0.56a mV−1 Sensitivity (regression slope) r0 25b s−1

50% neural activity v0 6a mV Steady state flow-volume relationship α 0.38b

Intra-regional coupling 
(from excitatory to inhibitory)

Cie 6 Rate constant for damped oscillations κ 0.64b Hz

Intra-regional coupling 
(from inhibitory to excitatory)

Cei 6 Rate constant for damped oscillations γ 0.32b Hz

Scaling factor R 2.2 Values of initial conditions [s, f, v, q] [0,1,1,1]c

Amplitude of noise 1.5 V/s2

aValues from Jansen and Rit study.44

bValues from Havlicek et al.58

cValues empirically determined based on the trajectories generated by the BW model. 
EPSP, excitatory postsynaptic potential; IPSP, inhibitory postsynaptic potential.
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relationships from two parcellation schemes), which are of 
lower dimension than observations (116 subjects). We con
sidered a simple regularized logistic regression that is a 
sparse method possessing good interpretability and is 
known to work well in many applications.64–66 There might 
be other methods that could give better accuracy.67 The 
main goal of the current study was however to compare 
the prediction results between several computational condi
tions including data processing and model validation. This 
could be demonstrated using such a linear (interpretable) 
machine learning method without an exhaustive search 
for the methods and conditions for the best performance. 
Thus, logistic regression is applicable to the current study. 
To this end, we used a regularized logistic regression with 
the least absolute shrinkage and selection operator 
(LASSO) for training and classification of HC versus 
Parkinson’s disease subjects.68 To avoid an overfit, the 
training error included the deviance and an L1-penalty.69

We used the lassoglm function for the logistic LASSO re
gression and the glmval function for predicted probability 
calculation in the Statistics and Machine Learning 
Toolbox of MATLAB R2020b.

Confound regression for 
age-controlled features
We used a cross-validation (CV) scheme to train the logistic 
LASSO regression for Parkinson’s disease classification. As 
for a degenerative disease,70,71 features for Parkinson’s dis
ease classification should be controlled by an age effect via 
a confound regression. Due to a random sampling from the 
same cohort and the usage of the same data for model val
idation and model training, it is important to prevent pos
sible data leakage during the CV procedure, especially for 
behavioural model fitting as it uses data across subjects. 
Otherwise, the trained models might be biassed due to the 
usage of the results of the behavioural model fitting derived 
from Parkinson’s disease classification against HC. In this 
respect, we followed the ideas of the cross-validated con
found regression72 as illustrated in Fig. 2. Specifically, we 
applied the CV-consistent approach to features derived 
from the empirical result, neuroimaging and behavioural 
model fitting. Accordingly, the subjects were split into 
training and test sets (Fig. 2, green and orange blocks in 
the outer loop) and the optimal parameter point of the be
havioural model fitting was calculated on the training set 
at every iteration of the outer CV loop (Fig. 2, the green 
box with the Circle 1). Then the respective connectome re
lationships were calculated for every subject. Next, the age 
was regressed out for these subjects (cross-validated con
found regressions in Fig. 2, Circles 1 and 2) from the ob
tained features of connectivity relationships used for 
subject classification. The optimal model parameters and 
the regression coefficients obtained for the training set 
were then used for the connectome calculation and the 
age regression for the test subjects.

Nested cross-validation
In order to avoid over-optimistic results of CV,73 we used 
nested CV to train the logistic LASSO regression for 
Parkinson’s disease classification (Fig. 2). In the outer loop, 
we randomly split the subjects into five subsets. One subset 
of 20% of subjects was considered as a test set (unseen sub
jects, the orange box in the outer loop in Fig. 2) and the other 
four subsets were pulled together and composed a training 
set (the green boxes in the outer loop in Fig. 2). As explained 
above, we first applied the cross-validated model fitting and 
confound regression to the features in the training set (Fig. 2, 
the green box with the Circle 1). Subsequently, the training 
set (age-controlled) was split into ten subsets for the nested 
CV in the inner loop. A logistic LASSO regression model 
was trained with the hyperparameters minimizing the 
10-fold CV error. This model was then applied to predict 
the test set. As follows from the aforementioned, the age- 
controlled training and test sets were used for model training 
and prediction, respectively. The training and testing proced
ure we performed can be summarized as follows: 

(i) Randomly split the entire subject cohort into five 
subgroups.

(ii) Select one group as a test set and compound the others 
into a training set.

(iii) Perform the cross-validated (behavioural) model fit
ting using the training set and extract respective con
nectome relationships corresponding to the optimal 
model parameters.

(iv) Perform the cross-validated confound (age) regression 
for the training set from the features based on the con
nectome relationships used for classification.

(v) Train the logistic LASSO regression model in the inner 
loop with a 10-fold CV that minimizes errors in the 
prediction model.

(vi) Apply the trained best model to predict the test set with 
age regression, where the optimal model parameters of 
the model fitting and age regression coefficients ob
tained for the training set were used (Fig. 2, the dashed 
arrow in the outer loop).

(vii) Calculate the model performance using a confusion 
matrix and an receiver operating characteristic 
(ROC) curve.

(viii) Perform Steps (ii)–(vii) for the other four subsets split 
in Step (i) as test sets in the outer CV loop (five predic
tion results).

(ix) Repeat Steps (i)–(viii), 50 times (250 prediction results 
in total).

Evaluation of prediction performance
For Parkinson’s disease classification based on the discussed 
machine learning approach, we considered five features for 
each of the two parcellation schemes (Schaefer and 
Desikan–Killiany atlases), i.e. 10 features in total: corr 
(eFC, eSC) as an empirical feature, corr (eFC, sFC) and 
corr (eSC, sFC) as simulated features for each model fitting, 
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i.e. the neuroimaging model fitting and the behavioural mod
el fitting. To investigate the impact of simulated results on 
the Parkinson’s disease prediction, we composed the consid
ered features into three conditions: (i) empirical features only 
(shuffle simulated features); (ii) simulated features only 
(shuffle empirical features); and (iii) all features (no shuf
fling). The shuffling was performed by a random re- 
distribution of the values of a given feature among subjects 
such that the correspondence of the feature to individual sub
jects was destroyed. By focusing on some features (connec
tome relationships and parcellations), the other features 
were shuffled. For example, to focus on the empirical fea
tures of the Schaefer atlas, four simulated features (eFC ver
sus sFC and eSC versus sFC for two model fitting modalities) 
of the Schaefer atlas and all five features (one empirical and 
four simulated features) of the Desikan–Killiany atlas were 
shuffled. The shuffling was performed for every feature sep
arately, randomizing feature values across subjects while re
taining distributional properties (Supplementary Fig. 2). 
After feature selection, model training and application of 
the trained model to the unseen test subject set, we calculated 
a confusion matrix from the prediction results and plotted a 
ROC curve.74 The latter was calculated from the prediction 
results obtained by varying the subject classification thresh
old of a predicted probability from 0 to 1. Then, we calcu
lated the prediction performance (accuracy, sensitivity, 
specificity and balanced accuracy) and the area under a curve 
(AUC) of the ROC curve.

In addition to the prediction considering the cross- 
validated confound regression with subjects’ ages using the 
entire cohort, we also applied the same approach to a ba
lanced subject configuration by excluding the 17 oldest 

Parkinson’s disease patients from 116 subjects. Thus, the ba
lanced cohort has no significant age difference between 
Parkinson’s disease and HC groups with balanced group 
sizes (see Supplementary Table 1). Subsequently, we ana
lysed the prediction performances of the balanced subject co
hort (99 subjects).

Statistical analysis
Statistical analysis was performed using functions in the 
Statistics and Machine Learning Toolbox of MATLAB 
R2020b. We set significance level at P < 0.05. We applied 
the Bonferroni correction to prevent multiple comparison is
sues when the test was used multiple times. Statistical tests 
used in the results were mentioned in each legend of figures 
and tables. We also scrutinized the prediction probabilities 
for individual subjects to evaluate the model’s performance. 
Here, the trained model estimated the predicted probabilities 
for each subject in the test set. Subsequently, we calculated a 
fraction of actual positives and showed relationships using 
probability calibration. The ideal case is to have the same va
lues for the fraction of positives and the predicted probabil
ity, i.e. the graph should align to the diagonal. In clinical 
applications, the tight correspondence between predicted 
probabilities and the fraction of actual positives provides 
high trustworthiness for diagnosis.75 To this end, we used 
the Brier score76 to calculate the mean-squared error of 
each predicted probability against an ideal case. We also 
used the Wasserstein distance to show how much cost is re
quired to turn a given distribution of the predicted probabil
ities into a uniform one.77 In other words, this metric was 
used to evaluate how well predicted probabilities were 

Figure 2 Schematic illustration of cross-validated model fitting, cross-validated confound regression and nested CV. The boxes 
under the ‘Training set’ in the leftmost plot illustrate randomly split subject subgroups used for training the model in the 5-fold outer loop and in 
the 10-fold inner loop. The box under the ‘Test set’ in the outer loop depicts the testing subject subgroup used for evaluation of the prediction 
performance of the trained model as given by accuracy, sensitivity, specificity, balanced accuracy and area under the ROC curve. P, positive as 
patients; N, negative as controls; TP, true positive; FP, false positive; TN, true negative; FN, false negative.
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uniformly distributed. Thus, a lower Wasserstein distance 
means that the predicted probabilities are relatively better ca
librated than those of a higher one. Accordingly, we further 
evaluated the model’s performance regarding individual pre
dicted probabilities in addition to the integrative perform
ance from the confusion matrix.

Results
In this study, we investigated the application of simulation 
results from whole-brain dynamical models to Parkinson’s 
disease classification using relationships between empirical 
and simulated connectomes as features. The whole-brain dy
namical model of the Jansen–Rit type was used to simulate 
the electrical neuronal activity and was validated against em
pirical data by means of neuroimaging or behavioural model 
fitting. Accordingly, we calculated the connectome relation
ships involving the simulated connectomes corresponding to 
the optimal model parameters of the two fitting modalities 
and used them as features for Parkinson’s disease classifica
tion. We show that complementing the empirical data by si
mulated data improves the prediction performance as 
compared with the case where only empirical data were used.

Neuroimaging model fitting
We calculated sFC using simulated BOLD signals for each 
parameter point and obtained the similarity (Pearson’s cor
relation) values between eFC and sFC. Figure 3 shows the 
corresponding landscapes of the GoF values in the delay- 
coupling (τglobal, C) parameter space averaged over all 
subjects, the distributions of the maximal GoF values and 
corresponding optimal model parameters for individual sub
jects for the Schaefer atlas (Fig. 3A-D) and the Desikan– 
Killiany atlas (Fig. 3E-H). We calculated eFC and sFC for 
the different frequency ranges of the corresponding filtered 
BOLD signals, i.e. NF, BF, LF and HF conditions (see 
Materials and methods for details). The profiles of the par
ameter landscapes were different between the considered 
brain atlases. The Schaefer atlas showed a unimodal distri
bution containing maximal GoF values (the dashed circle 
in Fig. 3A) for the optimal global delays in the biologically 
feasible range78 from 0.06 to 0.25 s/m (Fig. 3D). On the 
other hand, the maximal GoF for the Desikan–Killiany atlas 
posited a bi-modal distribution (the dashed circles in Fig. 3E) 
with well-separated peaks along the global coupling param
eter (Fig. 3G, compare with Fig. 3C). Moreover, stronger 
global coupling of the maximal GoF values was accompan
ied by a widespread global delay (the upper dashed circle 
in Fig. 3E) that may get out of the biologically feasible range 
as compared with the weaker global couplings (the lower 
dashed circle in Fig. 3E).

Furthermore, we observed that applying temporal filtering 
to BOLD signals diminished GoF values over the entire par
ameter landscape (Fig. 3B and F). In particular, the narrow 
frequency bands (LF and HF) resulted in significantly lower 

maximal GoF values than in the cases of the broader (BF) or 
entire frequency (NF) range; see Table 3 for statistical 
results.

Effect size of group comparisons for 
behavioural model fitting
The behavioural model fitting resulted in effect sizes of group 
difference between HC and Parkinson’s disease (Fig. 4A–B
for eFC-sFC correlation, see Supplementary Fig. 3 for 
eSC-sFC correlation). Furthermore, we also observed that 
the distributions of the optimal parameter points corre
sponding to the maximal effect sizes are densely concen
trated in the parameter space across repeated subsampling 
(1000 times) and filtering conditions (Fig. 4C–D, distribu
tions in blue). Interestingly, the distributions of the optimal 
parameters derived from the behavioural model fitting 
were strikingly different from those determined by the neu
roimaging model fitting (Fig. 4C–D, distributions in orange 
for the neuroimaging and in blue for the behavioural fitting). 
Both sets of optimal parameters are located in the biological
ly plausible range of time delay.78

Group difference between healthy 
controls and patients
The empirical structure-function relationships corr(eFC, 
eSC) for HC and Parkinson’s disease subject groups were 
found to be from distributions with different medians for 
the Schaefer atlas and all considered filtering conditions 
and for the LF condition only for the Desikan–Killiany atlas 
(Fig. 5, the first row). The group differences obtained by in
volving the simulated connectomes in the neuroimaging 
model fitting were small and non-significant for both atlases 
and all filtering conditions (Fig. 5, the second and third 
rows). On the other hand, for behavioural model fitting, 
we observed that Parkinson’s disease patients exhibited 
stronger agreements between empirical and simulated con
nectomes than HC subjects and can thus be better differen
tiated from HC (Fig. 5, the fourth and fifth rows).

Temporal filtering may influence the group differences for 
the empirical and also for the simulated connectomes as illu
strated in Fig. 5, see the first row for the Desikan–Killiany at
las, in particular and Supplementary Fig. 4. In addition, we 
calculated the explained variances of the five connectivity re
lationships between each other for the same and different fil
tering conditions, which resulted in relatively low similarities 
for the simulated results (Supplementary Fig. 5). 
Accordingly, the temporal filtering can influence the consid
ered connectivity relationships and may lead to dissimilar 
patterns of connectome relationships across subjects.

Prediction performance
We used the five whole-brain connectivity relationships as 
features for Parkinson’s disease classification using machine 
learning based on the logistic LASSO regression algorithm. 

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/1/fcac331/6905429 by guest on 29 D

ecem
ber 2022

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac331#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac331#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac331#supplementary-data


Brain modelling for Parkinson’s disease                                                                        BRAIN COMMUNICATIONS 2023: Page 11 of 19 | 11

The feature space constituted three feature conditions with 
ten features (five connectivity relationships for two atlases), 
see Supplementary Fig. 2. After the nested CV, the trained 
best models were relatively well balanced, with a slight ten
dency towards overfitting for some of the used performance 
measures (13.4% decreased balanced accuracy and 1.1% de
creased AUC of test performance from training one, see 
Supplementary Fig. 6).

Figure 6 shows the prediction performance for each of the 
investigated conditional cases of brain parcellations, fre
quency bands and feature conditions. The first important ob
servation is that involvement of the simulated connectomes 
can improve the classification of Parkinson’s disease and 
HC, see Fig. 6 and compare blue dots (empirical features) 
to red dots (simulated features) and to yellow dots (all fea
tures) (see Supplementary Fig. 7 for the differences). In the 
latter case, where the empirical features are complemented 
by the simulated ones, the prediction performance can only 
be enhanced as compared with purely empirical features, 
which we observed for most feature conditions and perform
ance measures (Fig. 6A–C). Interestingly, the performance 
further improved when using features from both atlases 
(Fig. 6 and Supplementary Fig. 7).

We also investigated how the prediction performance var
ies depending on the filtering conditions (Fig. 6D). The effect 
of the temporal filtering was prominent of the empirical fea
tures for the Schaefer atlas, where the performance was sig
nificantly increased for the LF condition compared with the 

others (Fig. 6D, the ‘Emp.’ column for the Schaefer atlas). On 
the other hand, the HF condition showed low performances 
on the empirical features, in particular, with very low speci
ficities down to zero (Fig. 6B and D) and very high sensitiv
ities up to 1 (Supplementary Fig. 8), where the LF filtering 
seems again to be a beneficial condition for Parkinson’s dis
ease prediction. Summarizing, the temporal filtering condi
tions influenced the model performance and the LF 
band-pass filtering resulted in the most effective prediction 
relying on the connectome relationships. The other consid
ered narrow-band HF filtering condition is not advisable 
for Parkinson’s disease classification. However, involving 
the simulated connectomes is still of advantage also under 
this condition as compared with using only empirical 
features.

We also compared the prediction performance when the 
simulated connectomes obtained from the neuroimaging 
and behavioural model fittings were considered separately. 
This resulted in two additional feature conditions (see 
Supplementary Fig. 8). The neuroimaging model fitting in 
most cases led to a weaker prediction performance compared 
with the behavioural model fitting or to the composite case 
when the features of both fittings are merged. This justifies 
the introduction of the behavioural model fitting for subject 
classification.

Furthermore, we applied the current approach to the ba
lanced subject configuration (99 subjects, see Supplementary 
Table 1 for the demography). The prediction performance 
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Figure 3 Results of the neuroimaging model fitting. (A–D) The Schaefer atlas and (E–H) the Desikan–Killiany atlas. (A, E) Parameter 
landscapes of the similarity (Pearson’s correlation) between eFC and sFC, i.e. goodness-of-fit (GoF) values averaged over the entire subject 
cohort. The landscapes are illustrated for each filtering condition (NF, BF, LF and HF, see Materials and methods for details). The dashed circles 
delineate the hills with large GoF values. Distributions of (B, F) the maximal GoF values, (C, G) optimal coupling parameters and (D, H) the 
respective optimal delays corresponding to the maximal GoF values for each filtering condition. The distributions of the maximal GoF values are 
significantly different across filtering conditions (P = 0.000 for the Schaefer atlas and P = 0.000 for the Desikan–Killiany atlas; Kruskal–Wallis 
non-parametric one-way analysis of variance test). Post-hoc: Significantly different filtering conditions are NF > BF, NF > LF, NF > HF, BF > LF and 
BF > HF in both atlas conditions (Wilcoxon signed-rank two-tail test, Bonferroni corrected P < 0.05, see Table 3 for details). The distributions of 
the optimal coupling parameters are not significantly different (P = 0.317 for the Schaefer atlas and P = 0.505 for the Desikan–Killiany atlas; the 
Kruskal–Wallis test). The distributions of the optimal delays are not significantly different (P = 0.459 for the Schaefer atlas and P = 0.824 for the 
Desikan–Killiany atlas; the Kruskal–Wallis test). The dashed horizontal lines in plots (D, H) indicate the biologically feasible delay range regarding 
the electrophysiological conduction speed. The middle lines in interquartile box plots indicate the medians of distributions, and the red plus signs 
are the outliers.
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was consistent with the main findings of the entire cohort (116 
subjects, Fig. 6). In other words, complementing empirical 
data with simulated results using LF filtering involving multi- 
parcellation (concatenating both atlases) is advisable for 
Parkinson’s disease classification (Supplementary Fig. 9).

Figure 6 shows the well-known measures characterizing 
the prediction performance as median values and interquar
tile ranges of distributions. Although these measures clearly 
reflect how well the machine learning approach is commonly 
working, we may also be interested in how every test is per
forming for the classification of individual unseen subjects. 
In this respect, Fig. 7 illustrates the results of classification/ 
prediction probabilities of all tests performed on individual 

subjects from the test sets. The prediction probabilities 
were collected and related to the probability calibration 
curves.

We can interpret the probability calibration plots 
(Fig. 7A–C) according to two aspects. Feature conditions 
using simulated results (red and yellow curves) resulted in 
predictions that are more closely aligned with the ideal 
case (the diagonal black line) than the empirical relationship. 
Indeed, for the Schaefer atlas and the multi-parcellation case, 
the distance to the diagonal as given by the mean-squared er
ror of the predicted probabilities against the actual classes 
calculated according to the Brier score76 is minimal for the 
composed features, including the empirical and simulated 
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Figure 4 Parameter maps of the effect size of the difference between goodness-of-fit (GoF) values (eFC-sFC correlation) of 
healthy and Parkinsonian groups used for the behavioural model fitting. The filtering conditions are indicated in the plots for (A) the 
Schaefer atlas and (B) the Desikan–Killiany atlas. Effect sizes in the (τglobal, C )-parameter plane were calculated by a non-parametric Wilcoxon 
rank-sum two-tailed test between patients and controls in the GoF values for each parameter point. (C, D) Distributions of optimal parameters 
derived from the neuroimaging model fitting (orange, all subjects, n = 116) and the behavioural model fitting (blue, repeated subsampling, n = 1000) 
for (C) the Schaefer atlas and (D) the Desikan–Killiany atlas.
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Figure 5 Differentiation between healthy and Parkinsonian subjects as reflected by the relationships between empirical and 
simulated connectomes. (Left) The Schaefer atlas and (Right) the Desikan–Killiany atlas. The simulated connectomes are calculated for the 
optimal model parameters of the neuroimaging and behavioural model fitting as indicated on the vertical axis. Summary tables of the effect sizes 
(numbers) of the differences between Parkinsonian and healthy subject groups are calculated by the Rosenthal formula and shown in negative for 
HC < Parkinson’s disease and positive for HC > Parkinson’s disease. The significant cases are indicated by rectangles as given by the Bonferroni 
corrected P-values of the Wilcoxon rank-sum two-tail test.
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connectomes for the LF filtering condition (Fig. 7E). As a se
cond aspect, the prediction probabilities derived from the 
empirical features are more narrowly distributed around 
0.5 (blue curves in Fig. 7D) compared with the case of all fea
tures (yellow curves in Fig. 7D). This can be quantified by the 
minimum cost of turning the observed distribution into a 
uniform distribution using the Wasserstein distance77

(Fig. 7F). In the latter case, the predicted probabilities de
rived from all features show widely spreading distribution 
that also reach the low and high probability values, which in
dicates high confidence.75 In other words, in our predictive 
modelling, the prediction results, where the empirical data 
were complemented by simulated features, were better cali
brated in some cases as compared with the case of the empir
ical data only (Fig. 7C). As mentioned above, the 
Wasserstein distance in Fig. 7F clearly shows which filtering 
condition and which feature condition can be the best bene
ficial configuration for Parkinson’s disease classification. In 
particular, the LF filtering of the BOLD signals and involving 
of the simulated connectomes together with the empirical 
ones for the Schaefer atlas and multi-parcellation case can 
improve the prediction results and the confidence of the pre
diction model. The same conclusion was drawn above based 
on the Brier scores, which confirm their robustness and may 
be relevant for the application of the discussed modelling and 
prediction approaches to clinical data and disease diagnosis.

Discussion
The main objective of this study is to effectively apply whole- 
brain dynamical modelling and the derived simulated connec
tomes to Parkinson’s disease classification. Whole-brain simu
lations allow us to explore various regimes of brain dynamics 
corresponding to different values of free model parameters. 
To extract features from the simulated results, it is essential 
to evaluate which model fitting is appropriate. The detected 
optimal model parameters can differ when we use different 
model fitting approaches. In other words, whole-brain dy
namics with proper model parameters can disclose group dif
ferences between Parkinson’s disease and HC subjects and 
provide a way to extract effective features for Parkinson’s dis
ease classification. In this study, we introduced the behaviour
al model fitting approach and showed that it captured 
differences between Parkinson’s disease and HC better than 
the conventionally used neuroimaging model fitting ap
proach. Then, we applied it to Parkinson’s disease classifica
tion. Based on our findings, we can conclude that using 
proper model validation in whole-brain dynamical modelling 
may provide effective features to machine learning and pro
vide information complementary to empirical features.

In addition to whole-brain dynamical modelling for classi
fication, data processing is also important because, as we 
have shown, different data processing influences model 

10.5

0.6

0.7

0.8

0.9

A
U

C

NF BF LF HF

Schaefer Desikan
Schaefer
Desikan

Schaefer Desikan
Schaefer
Desikan

Schaefer Desikan
Schaefer
Desikan

Schaefer Desikan
Schaefer
Desikan

0

0.2

0.4

0.6

0.8

1

S
pe

ci
fic

ity

NF BF LF HF

0.4

0.6

0.8
B

al
an

ce
d 

ac
cu

ra
cy NF BF LF HF

Boxplot: IQR (interquartile range) and medianEmp. Sim. All (Emp. and Sim.)

B

C

A

< <
< < < <

> > > > >
< < < <
> > > > > > >
> > > > > > > >

< <
< < < < <
> > > > > > >
< < < <
> > > > > > > > >
> > > > > > > > >

< <
< < < < <
> > > > > > > >
< < <
> > > > > > > > >
> > > > > > > > >

Schaefer Desikan Schaefer
Desikan

B
al

an
ce

d 
ac

cu
ra

cy
S

pe
ci

fic
ity

A
U

C

<<

<<
>>
>>

<<
<<
>>
<<
>>
>>

<<
<<
>>
<<
>>

<<
<<
<<

>>

>>

>>
>>

>>

>>
>>

>>

>>
>>

<
>
<
>
>

<<
>
<
>
>>

<<
>
<<
>

<

>>

<<

>>
>>

<<

>>
>>

>

>

>

>
>>

>

>
>>

>>
>>

>>

>>
>>

>>

>>
>>

<

<
>
>

<
<<

<
>
>>

<
<<
>

>
>>

<
<
<

>>

>>
>>

>>

>>
>>

>>

>>
>>

<<
>>
<<
>>
>>

<<
>>
<<
>>
>>

<<
>>
<<
>>
>>

<<
<<<<<<< <

<<<<<<<<<<<<<<<<<< << << <<
> >> > > >>>> > > >> >>

<< << << <<<< << << <<
> > >> > >> > >>>> >> > >> > >> >>
>> >> >> >> >> >> >> >>>> >> >> >> >> >> >> >>

< <<< <
<< << << << <<<< << << << <<
> > >> > > > >>>> >> > > >> >> >>
<< << << <<<< << << <<
> > >> > > > >> > >>>> >> > >> > >> > >> >>
>> >> >> >> >> >> >> >> >>>> >> >> >> >> >> >> >> >>

< <<< <
<< << << << <<<< << << << <<
> > >> > > >> > >>>> >> > > >> > >> >>
<< << <<<< << <<
> > >> > > > >> > >>>> >> > >> > >> > >> >>
>> >> >> >> >> >> >> >> >>>> >> >> >> >> >> >> >> >>

E
m

p.

S
im

.

A
ll

E
m

p.

S
im

.

A
ll

E
m

p.

S
im

.

A
ll

NF-BF

NF-LF

NF-HF

BF-LF

BF-HF

LF-HF

NF-BF

NF-LF

NF-HF

BF-LF

BF-HF

LF-HF

NF-BF

NF-LF

NF-HF

BF-LF

BF-HF

LF-HF
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
ffe

ct
 s

iz
e

D

E
ff

ec
t 

si
ze

Figure 6 Summary of the performance of Parkinson’s disease classification using the three different feature conditions: 
empirical features (left distribution), simulated features (middle distribution) and all features (right distribution) after incorporating the age 
controlling and the behavioural model fitting during the nested CV (Fig. 2). The median values of the balanced accuracy, specificity and AUC of the 
ROC curves for all considered parcellations and filtering conditions are shown in each panel for (A) balanced accuracy and (B) specificity and (C) 
AUC. The error bars indicate the interquartile range of 250 tests represented as data points in the plots across 50 iterations of the outer loop 
(5-fold) of the nested CV procedure (Fig. 2). The horizontal brackets connecting two coloured distributions indicate significantly different 
performance between feature conditions (Bonferroni corrected P < 0.05; Wilcoxon signed-rank two-tail test). (D) Effect sizes between filtering 
conditions for each feature condition. The signs ‘<’ and ‘>’ indicate which condition is significantly larger than the other. For example, ‘<’ sign for 
‘NF-LF’ indicated on the vertical axes means NF < LF for a given feature condition indicated on the horizontal axes. The Wilcoxon signed-rank 
two-tail test was used for comparisons across feature and filtering conditions (Bonferroni corrected statistics). The Desikan–Killiany atlas is 
shortend as ‘Desikan’.
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validation.6,30,35,79 In this respect, we investigated how tem
poral filtering of BOLD signals and brain parcellation influ
ence empirical and simulated results regarding model fitting, 
group difference and prediction performance. Based on our 
results, we can conclude that the resting-state whole-brain si
mulations with appropriate data processing and model valid
ation reflect personal traits of individual subjects, which may 
contribute to disease classification based on the whole-brain 
connectivity relationships with potential relevance in 
medicine.

Effect of temporal filtering on model 
fitting and prediction
The effect of temporal filtering on functional MRI has been 
the focus of neuroimaging research for a long time.80–83

One related study considered different temporal filters for 
MRI data processing and reported distinguishable BOLD 
dynamics in task-driven and resting-state brain activity 

between low and high-frequency band-pass filtering.38

Furthermore, temporal filtering can influence the classifica
tion performance for patients with Alzheimer’s disease as 
compared across several low- and high-band-pass filtering 
conditions.39 In this study, we found that the neuroimaging 
model fitting resulted in significantly different distributions 
of the maximal GoF values for individual subjects under dif
ferent filtering conditions. Furthermore, the empirical 
structure-function connectivity relationship and the max
imal GoF values of the neuroimaging model fitting were di
minishing for the narrower filtering bands (Supplementary 
Fig. 4).

Another study investigated Parkinson’s disease classifica
tion via machine learning on brain networks derived from 
the empirical resting-state FC with a high pass temporal fil
tering (> 0.01 Hz) of BOLD signals,36 which corresponds 
to the case of the NF condition in our study. According to 
our prediction results, we suggest to consider the low- 
frequency band-pass filtering, i.e. the LF condition, which 

Table 3 Comparisons between goodness-of-fit values of the considered filtering conditions (Bonferroni corrected 
P-values of the Wilcoxon signed-rank two-tail test) and the corresponding effect sizes by Rosenthal formula61

P (effect size) NF versus BF NF versus LF NF versus HF BF versus LF BF versus HF LF versus HF

Schaefer 0.000 (0.70) 0.000 (0.84) 0.000 (0.86) 0.000 (0.81) 0.000 (0.70) 0.998 (0.04)
Desikan–Killiany 0.000 (0.66) 0.000 (0.77) 0.000 (0.85) 0.000 (0.69) 0.000 (0.70) 0.838 (0.10)

Bold fonts indicate that the goodness-of-fit values are significantly different between filtering conditions.
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Figure 7 Performance of the trained prediction model regarding the predicted probabilities for individual subjects. (Top row) 
Plots of the probability calibrations from 5800 predictions for (A) the Schaefer atlas, (B) Desikan–Killiany atlas, and (C) multiple atlases, where the 
fraction of true positives is plotted versus the probability of them predicted by the trained model for individual subjects. The sizes of the circles 
indicate the number of individual subject tests for the three considered feature conditions as indicated in the legend in plot (A). (D) Histograms of 
the predicted probabilities (5800 predictions) for each feature condition, as indicated in the legend. The case of the LF band-pass filtering condition 
is illustrated in plots (A–D). (E) Table of the Brier scores (mean-squared error to the correct classes) for all considered filtering and feature 
conditions. (F) Tables of the Wasserstein distances between distributions of predicted probabilities and a uniform distribution for all conditions. 
Desikan, Desikan–Killiany; Emp., empirical features; Sim., simulated features; All, empirical and simulated features.
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can improve the differentiation and classification of 
Parkinson’s disease also for the case when only empirical fea
tures are used.

An appropriate selection of the filtering condition (broad- 
or narrow-, high- or low-frequency band) appears to be 
important for the prediction performance, as reflected by 
several integrative measures considered in this study. In par
ticular, a detailed evaluation of individual tests indicates that 
selecting a proper band-pass filter for the empirical and simu
lated BOLD signals can improve the prediction performance 
(Figs. 6 and 7).

In a broader perspective, changing parameter values or al
gorithms in a data processing pipeline can affect empirical re
sults such as structural and functional connectivities, which 
in turn influence simulation results. In previous studies, 
for instance, we reported the impact of data processing 
on simulated results by whole-brain dynamical modelling: 
WBT densities,30 region granularities,6 parcellation 
schemes,6,30,79,84 whole-brain simulation models6,79,84 and 
model fitting approaches.6,30 In the current study, we 
showed that applying temporal filtering to BOLD signals 
and using different brain parcellations and their combina
tions, as well as the neuroimaging and behavioural types of 
model fitting, can impact empirical and simulated results 
and their classification performance. Subsequently, we there
fore investigated the impact of the considered parameter con
ditions of the data processing and model simulation on 
classification performance. By doing so, the conditional pipe
line, which gives the highest performance, can be considered 
as contributing to the extent of the data and model personal
ization, which is important for subject classification based on 
clinical or behavioural data and their simulations.

Biophysical interpretation of model 
parameters
Under the assumption that the resting-state brain activity is 
governed by a complex dynamical system, we can interpret 
the optimal model parameters of the neuroimaging model fit
ting as parameters of that system with potential neuroscien
tific/physical meaning. Since the optimal parameters were 
determined by distinct model validations, they can differ 
when a given model fitting approach changes as observed 
in our previous studies6,30 and demonstrated by the results 
in the current study (Fig. 4C–D). Furthermore, the parcella
tions also impact on the locations of the optimal parameters. 
For instance, the optimal global coupling parameters derived 
from the behavioural model fitting suggest weaker optimal 
couplings than those from the neuroimaging model fitting 
for the Schaefer atlas (Fig. 4C). On the other hand, the situ
ation for the Desikan–Killiany atlas is opposite (Fig. 4D).

In our model, we used the reconstructed PLs of the tracto
graphy streamlines in the white matter, which approximate 
the actual lengths of the anatomical axonal connections in 
the brain. The considered model simulates the electrical ac
tivity of the excitatory and inhibitory neuronal populations 
in the brain regions, as reflected by the dynamics of the 

respective PSP signals. We can thus evaluate and interpret 
the optimal model parameters for the propagation of the si
mulated electrical signals (EPSP) along the brain pathways. 
We, in particular, found that the neuroimaging model fitting 
resulted in the optimal delay of the signal propagation in the 
electrophysiologically plausible range78 (Fig. 3D and H). 
This confirms the applicability of the used dynamical model 
for simulating brain dynamics. Furthermore, the optimal de
lay of the behavioural model fitting obtained from repeated 
subsampling for different subject configurations is located 
in the same biologically reasonable range as well, which va
lidates the behavioural model fit (Fig. 4C–D). Further para
meters of the considered model and the simulated electrical 
PSP signals (Table 2) may have biologically plausible inter
pretations and ranges. Here we may mention, for example, 
the excitation-inhibition balance of the intra-regional coup
ling or the time constants responsible for controlling slow or 
fast oscillations of electrical neuronal activity.

In Parkinson’s disease research, a neural model generating 
such oscillations in a certain frequency range is essential to 
engaging the pathological neural activity during rest. 
Previous studies reported that the resting-state cortico- 
cortical FC of Parkinson’s disease patients changed in the 
8–10 Hz range (in the alpha-rhythm) for early-stage and 
moderately advanced Parkinson’s disease patients85 and 
cortico-cortical coupling for oscillations between 10 
and 35 Hz correlated with the severity of Parkinson’s disease 
in the electroencephalogram study.86 High oscillatory syn
chrony in the basal ganglia at frequencies of 8–35 Hz was 
also associated with Parkinson’s disease based on spectral 
power changes between off- and on-drug (levodopa 
dose).87 With this respect, we may also investigate the rela
tionship between frequencies of neural activity and models 
by varying the scale factor R of the current whole-brain dy
namical model.

Exploring parameter landscapes
The neuroimaging model fitting is a well-established model 
validation as though maximizing GoF values of the model 
is the main objective of the model validation. Nevertheless, 
brain dynamics for non-optimal model parameters may 
also provide additional useful properties. They can contrib
ute to the application of the dynamical models to analyse 
the brain and behaviour. In particular, brain modelling 
with virtual brains or in silico models for brain abnormalities 
has been used for clinical purposes.26–28 To this end, we ex
plored the parameter landscapes of GoF values and searched 
for parameter points that provide optimal GoF values to ef
fectively answer the current research question. As we re
ported in the results, there exist hotspots of the densely 
located optimal model parameters, where either neuroima
ging or behavioural model fitting is the most effective, al
though these hotspots may not coincide (Fig. 4C-D, the 
distributions in blue and orange). This should be linked to 
the definition of the atlas and, hence, regions. We also ob
served an impact of brain parcellations on the distributions 
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of the optimal parameters.6,30,79,84 A detailed investigation 
of this phenomenon will require considering more parcella
tion schemes to systematically describe their influence on 
the modelling results, as we already initiated in our previous 
studies.6,30,79,84 Therefore, a systematic exploration of par
ameter landscapes allows us to find proper model parameters 
for a given purpose, which may be different in locations and 
other properties from one modelling condition and research 
question to another. Accordingly, we conclude that explor
ing parameter landscapes of the whole-brain dynamical 
models using behavioural/phenotypical measures might re
veal optimal model parameters best suited for research goals 
related to inter-individual variability and prediction 
approaches.

Classification of Parkinsonian 
patients
In this study, we did not aim at obtaining the highest pre
diction accuracy, which might have required extensive 
testing of many simulation and prediction conditions, fea
ture spaces, and learning algorithms. Nevertheless, the ob
tained prediction performance (65.2% as median accuracy 
using empirical features) is comparable with that reported, 
for example, in the study of Plaschke et al.36 which had 
a median accuracy of 65.5% over considered brain 
networks.

When we considered the simulated data for Parkinson’s 
disease classification, the features from the neuroimaging 
model fitting had much lower performance in most consid
ered cases as compared with the features from the behaviour
al model fitting (Supplementary Fig. 8). Therefore, we 
suggest that the behavioural model fitting can be used to val
idate the model against behavioural data for probing the si
mulated whole-brain dynamics to improve the model 
correspondence to phenotypical characteristics of subjects 
and prediction results. Such an approach may be of crucial 
importance in clinical research and the reported results 
showed promising confirmations.

In this study, we also explored the impact of a few data 
processing choices and model simulation on the differenti
ation and prediction performance. For example, composing 
predictive features including empirical and simulated con
nectomes from multiple brain atlases can provide comple
mentary features leading to even better prediction 
performance (Supplementary Fig. 7). We further showed 
that also filtering conditions of empirical and simulated 
BOLD signals can play an important role in model validation 
and subject classification, where in particular, prediction 
specificity may vary significantly across filtering conditions 
as well as the number of false positives of the trained model 
can be reduced by appropriate filtering (Fig. 6).

Modern neuroimaging research dedicated to prediction 
analysis and based on machine learning techniques has 
shown enhanced performance for clinical data and in radi
ology in particular.67,88 Those predictive results and devel
oped approaches have faced the issue of translation of their 

analysis and interpretation of the obtained outcomes to clin
ical application.89 In this respect, the current study illu
strated the characteristics of individual prediction 
probabilities to bridge the gap between modelling and pre
diction results and their translation for diagnosis in clinical 
research. The analysis included in the present study explored 
the calibration of the predicted probabilities for individual 
subjects and provided additional reliable information for 
the interpretation of the classification results. This can be 
achieved when the prediction probabilities are considered 
at the level of individual subjects, for example, when new, 
unseen patients are tested for diagnostic purposes. 
Furthermore, the discussed probability analysis delivered 
additional evidence that the whole-brain simulation results 
can be useful for complementing empirical data for predic
tion and classification in clinical research. Consequently, in
volving the whole-brain dynamical models in the training of 
machine learning models can improve individual prediction, 
which can potentially help a clinician better gauge a diagno
sis during the examination of individual patients.

Future work
For further studies, other phenotypical properties can be 
used for the behavioural model fitting, for instance, age or 
sex. Of course, cognitive or clinical scores such as the 
Montreal Cognitive Assessment, Mattis dementia rating 
scales and the unified Parkinson’s disease rating scales are 
also applicable. The suggested approach to behavioural 
model fitting is similar to the brain mapping of various be
havioural or phenotypic measures on the cortical surface 
and can thus be generalized. In other words, we can map 
the parameter space using cognitive or clinical scores, which 
can be referred to as phenotypical mapping on the model 
parameter space like the behavioural model fitting that we 
introduced in the present study.

Summary
We simulated whole-brain resting-state dynamics and calcu
lated the relationships between structural and functional em
pirical and simulated connectomes for a variety of conditions 
and data processing, options including brain parcellation 
and temporal filtering of BOLD signals. We introduced the 
behavioural model fitting paradigm and found that the ensu
ing modelling results can lead to enhanced differentiation of 
disease and control groups and improved classification of 
Parkinsonian patients by machine learning approaches. 
Thus, the involvement of simulated connectomes, especially, 
in combination with empirical ones, is of great advantage, 
where the individual probabilities approach the ideal case 
as compared with the purely empirical feature space. We 
showed that band-pass filtering in the low-frequency band 
can have a beneficial effect on the prediction performance. 
On the other hand, the high-frequencies of the empirical 
and simulated BOLD signals should be considered with care 
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and may not immediately be recommended for subject-level 
classification. In addition, we demonstrated that the predic
tion performance can differ for different or multiple brain par
cellation schemes. Our findings can contribute to a better 
understanding of empirical and simulated whole-brain dy
namics and their relationship to disease. They further suggest 
an avenue for application of the results of whole-brain simu
lations for cognitive or clinical investigation of inter- 
individual differences and disease diagnosis.
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