
Quantum Boltzmann Machines
Applications in Quantitative Finance

Cameron Perot

Master’s Thesis
submitted to

the Faculty of Mathematics, Computer Science, and Natural Sciences
of RWTH Aachen University

written at

Jülich Supercomputing Centre
Forschungszentrum Jülich

First Examiner: Prof. Dr. Kristel Michielsen∗,†

Second Examiner: Prof. Dr. Holger Rauhut∗
Adviser: Dr. Dennis Willsch†

∗RWTH Aachen University, D-52056 Aachen, Germany
†Jülich Supercomputing Centre, Institute for Advanced Simulation,

Forschungszentrum Jülich, D-52425 Jülich, Germany

July 4, 2022

Abstract

In this thesis we explore using the D-Wave Advantage 4.1 quantum annealer to sample from
quantum Boltzmann distributions and train quantum Boltzmann machines (QBMs). We
focus on the real-world problem of using QBMs as generative models to produce synthetic
foreign exchange market data and analyze how the results stack up against classical models
based on restricted Boltzmann machines (RBMs). Additionally, we study a small 12-qubit
problem which we use to compare samples obtained from the Advantage 4.1 with theory,
and in the process gain vital insights into how well the Advantage 4.1 can sample quantum
Boltzmann random variables and be used to train QBMs. Through this, we are able to show
that the Advantage 4.1 can sample classical Boltzmann random variables to some extent,
but is limited in its ability to sample from quantum Boltzmann distributions. Our findings
indicate that QBMs trained using the Advantage 4.1 are much noisier than those trained
using simulations and struggle to perform at the same level as classical RBMs. However,
there is the potential for QBMs to outperform classical RBMs if future generation annealers
can generate samples closer to the desired theoretical distributions.

i

Contents

1 Introduction 1

2 Data Analysis & Preprocessing 3
2.1 Data Analysis . 3
2.2 Data Preprocessing . 4

2.2.1 Data Transformation . 6
2.2.2 Additional Information . 6

3 The Classical Restricted Boltzmann Machine 11
3.1 Theory . 11

3.1.1 Optimizing an RBM . 12
3.2 The Classical Market Generator . 13

3.2.1 Models . 14
3.2.2 Results . 14
3.2.3 Summary . 17

4 The Quantum Boltzmann Machine 21
4.1 Theory . 21

4.1.1 Optimizing a QBM . 22
4.1.2 Quantum Annealing . 22

4.2 12-Qubit Problem . 26
4.2.1 Sampling From a Quantum Boltzmann Distribution 27
4.2.2 Training Data . 30
4.2.3 Simulation-based Model . 30
4.2.4 D-Wave Advantage 4.1-based Model 32

4.3 The Quantum Market Generator . 35
4.3.1 Setting the Annealer’s Hyperparameters 35
4.3.2 Results . 36
4.3.3 Comparison to Gate-Based Models 38
4.3.4 Summary . 40

4.4 Challenges of Using a D-Wave Annealer to Train QBMs 42
4.4.1 Choosing an Embedding . 42
4.4.2 Sampling the Proper Distribution . 42
4.4.3 QPU Limitations and Imperfections 43

5 Conclusion 45
5.1 Summary . 45
5.2 Future Directions . 46

Appendix A Definitions and Methodologies 47
A.1 Correlation Coefficients . 47
A.2 Annualized Volatility . 47
A.3 Learning Rate Decay Schedule . 48

iii

A.4 Autocorrelation Analysis . 48
A.5 Kullback-Leibler Divergence . 48

A.5.1 Kullback-Leibler Divergence in Practice 49
A.6 Tail Concentration Functions . 49
A.7 Exact Computation of ρ . 50
A.8 Constants . 50

Appendix B Restricted Boltzmann Machine 51
B.1 Conditional Probabilities . 51
B.2 Log-Likelihood Derivative . 52

Appendix C Quantum Boltzmann Machine 53
C.1 Log-Likelihood Derivative . 53
C.2 Log-Likelihood Lower Bound . 54
C.3 Log-Likelihood Lower Bound Derivative . 55
C.4 Effective β as a Learnable Parameter . 56

iv

Chapter 1

Introduction

In recent years we have seen the inception of cloud-based quantum computing, with a
number of different providers offering various services. In terms of maturity, the quantum
computing industry as a whole is still in the early stages and there are a lot of obstacles
left to overcome before mainstream adoption. Quantum computing is not only trying to
advance the theory and technology, but also yearning for practical applications in which
quantum computing offers advantages over classical computing.

There are two main branches of quantum computing: universal quantum computing,
i.e., gate-based quantum computing, and adiabatic quantum computing, i.e., quantum
annealing. In our work here we focus on the latter, as current generation devices are slightly
more mature and have much higher numbers of qubits than the former. We discuss the
theory behind quantum annealing later in Section 4.1.2. One such cloud-based quantum
computing service is D-Wave’s Leap platform [1], which allows users to access quantum
annealers and other solvers across the world.

D-Wave is a pioneer in this field, having been researching and developing quantum
annealers since 1999. They revolutionized the field with the release of the world’s first
commercially available quantum annealer in 2011 [2]. Since then, they have released a
new version every 2-3 years, each having more qubits and couplers than the previous.
Their latest version, the D-Wave Advantage, has over 5000 qubits with 15 connections per
qubit [3].

In this thesis we take a journey into the field of quantum machine learning and explore
the possibilities of using quantum Boltzmann machines (QBMs) as generative models for
real-world financial data. As we will see, there is a deep connection between the quantum
Boltzmann machine and quantum annealing, allowing one to train QBMs using a quantum
annealer.

Risk management is one of the most important components of the financial system, and
in 2008 it failed, leading to the financial crisis which wreaked havoc on economies around
the world. The success of risk management hinges on how accurately the underlying risk
models capture the true behavior of the market. Therefore, it is essential that we continu-
ously strive to find new and innovative ways of modeling that can help us understand the
real risks involved and implement policies to effectively mitigate such risks.

In the globalized economy of today, foreign exchange (forex) fluctuations expose a
number of firms to a lot of risk if not properly mitigated. Forex markets had a daily
volume of $6.6T in 2019 [4], the majority of which was concentrated in a few major pairs.
In the 2019 paper The Market Generator [5], Kondratyev and Schwarz detail how a classical
restricted Boltzmann machine (RBM) can be used to generate synthetic forex data, and
the advantages it offers over traditional parametric models. We use their work as a basis to
build our classical models upon, which we then use as a reference to compare our quantum
models with.

1

In Chapter 2, we start by visualizing the data set in various ways to get an idea how
it is distributed. We further analyze quantitative metrics to get a better understanding of
some of the intricacies of the data set. Finally, we go through and detail how we preprocess
the data set into a model-friendly format.

With the data set in hand, we move to explaining the theory behind the classical
RBM in Chapter 3 and describing some of the difficulties associated with training and
using classical RBMs. We then train several classical models on the data set discussed
in Chapter 2 using different preprocessing methods and compare them with each other
using visualizations and a number of quantitative metrics.

In Chapter 4, we start from the theory of quantum Boltzmann machines, detailing how
they work and their connection to quantum annealing. We study a small 12-qubit problem
which we can simulate, allowing us to compare annealer performance with that of theory,
and gaining key insights into how to train and use QBMs. With those insights, we move
to the final stage of training a model using the data set from Chapter 2, then assessing
the performance versus the classical models from Chapter 3. Additionally, we cover some
of the challenges of using D-Wave quantum annealers to train QBMs in Section 4.4.

Lastly, we summarize our findings in Chapter 5, as well as discuss future directions in
which this research can be expanded.

In addition to the research and results presented here, we also introduce the open source
Python package qbm [6] to make it easier for the community to train and study quantum
Boltzmann machines. All work presented here is reproducible (except for that involving
quantum measurements), and the code is available on the Forschungszentrum Jülich Git
server 1.

1https://jugit.fz-juelich.de/qip/qbm-quant-finance

2

https://jugit.fz-juelich.de/qip/qbm-quant-finance

Chapter 2

Data Analysis & Preprocessing

2.1 Data Analysis

Our raw data set consists of the daily open, high, low, and close (OHLC) values for the
time period 1999-01-01 through 2019-12-31 of the following major currency pairs

• EURUSD - Euro € / U.S. Dollar $

• GBPUSD - British Pound Sterling £ / U.S. Dollar $

• USDCAD - U.S. Dollar $ / Canadian Dollar $

• USDJPY - U.S. Dollar $ / Japanese Yen ¥

obtained from Dukascopy historical data feed [7]. We filter the data set to remove days
with zero volume, as well as NYSE and LSE holidays, resulting in 5165 training samples.
Here we use the notation xopen, xhigh, xlow, and xclose to denote the open, high, low, and
close values of a currency pair on a particular day.

Given that the raw data values are on an absolute basis, we need to convert them to
relative terms in order to be able to compare data from different time periods on a more
equal footing. The natural way to do so is to use the intraday returns

r =
xclose − xopen

xopen
. (2.1)

However, this is not necessarily the best way to approach this. Instead, we opt to use the
log returns

r̃ = log(1 + r) = log

(
xclose

xopen

)
(2.2)

due to several advantages, such as log-normality and small r approximation [8].
We begin our analysis by taking a look at the histograms depicted in Fig. 2.1. From

visual examination we see that the log returns are roughly normally distributed with the
statistics given in Table 2.1.

We also visualize the log returns in a violin and box plot in Fig. 2.2 to identify outliers
and see how they are distributed. Two major outliers clearly stand out from the rest: one to
the downside for the GBPUSD pair, and another to the upside for the USDJPY pair. The
former occurred on 2016-06-24, the day the Brexit referendum result was announced [9].
The latter occurred on 2008-10-28, right in the midst of the financial crisis when people
were talking about the end of the Yen carry trade [10]. In the final training data set,
we remove outliers greater than 10σ from the mean, resulting in only removing the day
corresponding to the Brexit referendum result, which lies 11.1σ below the mean.

3

Figure 2.1: Histograms of the log returns data set.

Log Returns Data Set Statistics

Currency Pair Mean Standard Deviation

EURUSD 5.15 · 10−5 6.17 · 10−3

GBPUSD −8.49 · 10−6 5.73 · 10−3

USDCAD −5.04 · 10−5 5.40 · 10−3

USDJPY −6.31 · 10−5 6.32 · 10−3

Table 2.1: Statistics of the log returns data set.

Next we examine the correlations between the currency pairs to get an idea of the inter-
dependencies between them. We visualize this with scatter plots shown in Fig. 2.3 where we
observe a clear positive correlation between EURUSD/GBPUSD, and clear negative cor-
relations between EURUSD/USDCAD and GBPUSD/USDCAD, where the / is used to
denote the pairs being compared against each other. This is further verified by the Pearson
r, Spearman ρ, and Kendall τ correlation coefficients laid out in Table 2.2. Furthermore,
we find the correlation coefficients to be positive for pairs of the form XUSD/Y USD, and
negative for pairs of the form XUSD/USDY , for X,Y ∈ {EUR, GBP, CAD, JPY}, as
expected. Details on how the correlation coefficients are computed and how to interpret
them can be found in Appendix A.1.

2.2 Data Preprocessing

The models in the following chapters require the training data to be in the form of bit
vectors, so we must first convert our data set to such a form. Let X ∈ R4×N represent
the training data set of log returns with N samples, where training samples are vectors in
the column space, thus element xij represents the ith currency pair log return for the jth
training sample.

To discretize the data, we rescale and round the entries of X to integer values in

4

Figure 2.2: Violin and box plot of the log returns data set illustrating the distribution of
the outliers.

Figure 2.3: Scatter plots of the log returns data set.

{0, 1, . . . , 2nbits − 1}, represented by the matrix X′ ∈ N4×N with entries

x′ij =

⌊
xij −mink{xik}

maxk{xik} −mink{xik}
· (2nbits − 1)

⌉
, (2.3)

where ⌊ · ⌉ denotes rounding to the nearest integer.

5

Correlation Coefficients

Currency Pairs Pearson Spearman Kendall

EURUSD/GBPUSD 0.62 0.62 0.44
EURUSD/USDCAD -0.44 -0.41 -0.29
EURUSD/USDJPY -0.26 -0.30 -0.21
GBPUSD/USDCAD -0.42 -0.37 -0.26
GBPUSD/USDJPY -0.14 -0.21 -0.15
USDCAD/USDJPY 0.00 0.06 0.04

Table 2.2: Correlation coefficients of the log returns data set.

A new matrix V ∈ {0, 1}4·nbits×N is then created with the columns being the nbits-
length bit vectors corresponding to the binary representation of the entries of the columns
of X′ concatenated together. For example, if x′ = (x′1, x

′
2, x

′
3, x

′
4) is a column of X′ and the

function bitvector(x′) takes in an integer x′ and returns an nbits-bit binary representation
bit vector, then the corresponding column in V is

v =


bitvector(x′1)
bitvector(x′2)
bitvector(x′3)
bitvector(x′4)

 ∈ {0, 1}4·nbits . (2.4)

For this research we take nbits = 16, giving us a training set V ∈ {0, 1}64×N , thus our
training samples are bit vectors of length 64. The discretization errors associated with this
conversion and data set are on the order of 10−7, well within the desired tolerance for this
purpose.

2.2.1 Data Transformation

Due to how the data is linearly converted to a discrete form before rounding, it opens up the
possibility of the discretized data being clustered in the mid-range values if large outliers
are present. To mitigate this, we use a transformation to reduce the gap between outliers by
scaling outliers beyond a certain threshold τ using the procedure detailed in Algorithm 1.
We call this the outlier power transformation.

In practice, we take τ = 1 and α = 0.5, thus the standardized data points above
one standard deviation are mapped to their square roots, as illustrated in Fig. 2.4. We
tested a few other combinations of τ and α, but found these values to produce the best
model results out of those we tried; of course this could likely be further optimized. The
effect this transformation has on the model results versus the base dataset can be seen
in Section 3.2.2. This transformation is invertible when x̄, σx, and δ are saved.

Histograms of the transformed data set are shown in Fig. 2.5, and a violin and box
plot is shown in Fig. 2.6. In these, we observe the appearance of "shoulders" around the
threshold τ = 1 standard deviation, and that the transformed outliers appear much less
extreme, allowing us to better utilize the full range of discrete values. Table 2.3 shows
that the transformation reduces the standard deviations to roughly 78% of their originals
values given in Table 2.1.

2.2.2 Additional Information

As mentioned in [5], one can use additional binary indicator variables to enrich the training
data set. One such bit of information is the rolling volatility relative to the historical median
(see Appendix A.2 for definition of annualized volatility). If the 3-month rolling volatility

6

Algorithm 1 Outlier Power Transformation
1: procedure Transform(x, α, τ) ▷ α is the power, τ is the threshold
2: N ← length(x)
3: x̄← 1

N

∑N
i=1 xi

4: σx ←
√

1
N

∑N
i=1(xi − x̄)2

5: δ ← τ − τα ▷ ensures the transformation is bijective
6: for i in 1 to N do
7: xi ← (xi − x̄)/σx ▷ standardize
8: if xi > τ then
9: xi ← (|xi|α + δ) · sign(xi) ▷ scale standardized values beyond τ

10: end if
11: xi ← xi · σx + x̄ ▷ undo standardization
12: end for
13: end procedure

Figure 2.4: Transformation defined in Algorithm 1 using τ = 1 and α = 0.5, for the
purpose of reducing large gaps in the discretized data set by scaling outliers above τ
standard deviations.

Transformed Log Returns Data Set Statistics

Currency Pair Mean Standard Deviation

EURUSD 5.54 · 10−5 4.88 · 10−3

GBPUSD 1.66 · 10−5 4.48 · 10−3

USDCAD −6.42 · 10−5 4.21 · 10−3

USDJPY −4.68 · 10−5 4.93 · 10−3

Table 2.3: Statistics of the outlier power-transformed log returns data set.

is below (above) the historical median it is assigned a value of 0 (1) to indicate the low
(high) volatility regime. The 3-month rolling volatilities versus their historical medians are

7

Figure 2.5: Histograms of the outlier power-transformed log returns data set.

Figure 2.6: Violin and box plot of the outlier power-transformed log returns data set
illustrating the distribution of the rescaled outliers.

plotted in Fig. 2.7.
These additional binary indicator variables are then concatenated onto the training

data set and fed to the model to make it more flexible by allowing for the model outputs
to be conditioned on a specific volatility regime. Adding one indicator for each of the
four currency pairs increases the number of rows in our training data set by four, thus the

8

volatility-concatenated data set is in the space {0, 1}68×N .

Figure 2.7: 3-month rolling volatilities of the log returns data set compared with their
historical medians.

9

Chapter 3

The Classical Restricted Boltzmann
Machine

3.1 Theory

The restricted Boltzmann machine (RBM) is an energy-based model defined by the energy
function [11]

E(v,h) = −
nv∑
i=1

aivi −
nh∑
j=1

bjhj −
nv∑
i=1

nh∑
j=1

viwijhj

= −a⊺v − b
⊺
h− v

⊺
Wh,

(3.1)

where

• v ∈ {0, 1}nv represents the visible units, with associated bias vector a ∈ Rnv .

• h ∈ {0, 1}nh represents the hidden units, with associated bias vector b ∈ Rnh .

• W ∈ Rnv×nh represents the weights corresponding to the interaction strengths be-
tween visible and hidden units.

It is termed restricted due to the fact that there are no intralayer connections, i.e.,
visible units are only connected to hidden units, and vice versa. An example diagram is
depicted in Fig. 3.1.

The probability to find the system in the configuration (v,h) is given by the Boltzmann
distribution (with β = 1/kT = 1)

p(v,h) =
1

Z
e−E(v,h), (3.2)

with intractable [12] partition function

Z =
∑
v,h

e−E(v,h), (3.3)

where
∑

v,h denotes the sum over all possible configurations of v and h.
The imposed restrictions on intralayer connections enable us to write the conditional

probabilities of the layers as the product of the individual units’ probabilities 1 (see Ap-

1Here σ(x) is the element-wise logistic sigmoid function and ⊙ denotes element-wise multiplication.

11

Figure 3.1: Diagram of a restricted Boltzmann machine with nv visible units and nh hidden
units.

pendix B.1 for derivation)

p(h|v) =
nh∏
j=1

σ
(
(2h− 1)⊙ (b+W

⊺
v)

)
j
,

p(v|h) =
nv∏
i=1

σ
(
(2v − 1)⊙ (a+Wh)

)
i
.

(3.4)

3.1.1 Optimizing an RBM

Due to the intractability of the partition function, the model cannot be solved exactly in
general, thus we resort to other methods to optimize it such as likelihood maximization
via gradient descent. For data set distribution pdata and parameters θ = (W,a,b), the
log-likelihood is given by

ℓ(θ) =
∑
v

pdata(v) log p(v)

=
∑
v

pdata(v) log

(
1

Z

∑
h

e−E(v,h)

)
,

(3.5)

with gradients (see Appendix B.2 for derivation)

∂wijℓ(θ) = ⟨vihj⟩data − ⟨vihj⟩model,

∂aiℓ(θ) = ⟨vi⟩data − ⟨vi⟩model,

∂bjℓ(θ) = ⟨hj⟩data − ⟨hj⟩model.

(3.6)

The part of the gradient under the data set distribution is referred to as the positive
phase, and the part under the model distribution is referred to as the negative phase. It
is trivial to compute the expectation values in the positive phase, but not so much in the
negative phase because p(v) cannot be sampled directly.

12

Figure 3.2: Illustration of the n-step Gibbs sampling procedure.

In practice the negative phase expectation values are sampled using a Markov chain
Monte Carlo (MCMC) method. This is done via Gibbs sampling [13], which uses the con-
ditional probabilities p(h|v) and p(v|h). One starts with a visible vector and then samples
the hidden units conditioned on the visible units, followed by sampling the visible units
conditioned on the hidden units, and so forth until the desired thermalization threshold is
reached. The number of steps required to reach thermalization is model dependent and can
be estimated by analyzing the autocorrelations of a sample chain generated by the model.
The algorithm for Gibbs sampling is given in Algorithm 2 and illustrated in Fig. 3.2. The
algorithm is presented in a vectorized format for brevity.

Algorithm 2 Gibbs Sampling
1: procedure Gibbs(v, n,W,a,b)
2: nv ← length(a)
3: nh ← length(b)
4: for k in 1 to n do
5: r ∼ Uniform(0, 1, nh)
6: h← r < σ(b+W

⊺
v) ▷ σ,< applied element-wise

7: r ∼ Uniform(0, 1, nv)
8: v← r < σ(a+Wh) ▷ σ,< applied element-wise
9: end for

10: return v
11: end procedure

The Uniform(a, b, n) function in Algorithm 2 produces a length n vector of uniform
i.i.d. random variables on the interval [a, b), and the < operator acts element-wise with
(true, false) 7→ (1, 0).

The standard procedure for training an RBM is called n-step contrastive divergence
(CD-n), with n often taken to be one in practice [13]. The algorithm is detailed in Al-
gorithm 3, where one can see that n corresponds to how many Gibbs sampling steps are
between the positive and negative phase gradients. Applying the algorithm to a mini-
batch is essentially the same except that one divides the learning rate by the size of the
mini-batch to get a mini-batch averaged gradient.

3.2 The Classical Market Generator

In The Market Generator [5] by Kondratyev and Schwarz, they show how an RBM can be
used as a generative model to produce synthetic market data. Specifically, they study how
it performs on the log returns of forex data for the same currency pairs we use here for the
time period 1999-2019. In this section we use some of the same metrics, as well as a couple
additional ones, so that we can verify our models achieve similar performance to theirs, as

13

Algorithm 3 n-Step Contrastive Divergence (CD-n)
1: procedure CD(v+, n,W,a,b, η) ▷ v+ is a training sample
2: h+ ← σ(b+W

⊺
v+) ▷ σ applied element-wise

3: v− ← Gibbs(v+, n,W,a,b)
4: h− ← σ(b+W

⊺
v−) ▷ σ applied element-wise

5: W←W + η(v+h
⊺
+ − v−h

⊺
−)

6: a← a+ η(v+ − v−)
7: b← b+ η(h+ − h−)
8: return W,a,b
9: end procedure

well as give us a good reference point to compare our quantum models within Chapter 4.

3.2.1 Models

We train and analyze four RBM models using variations of the filtered data set from Chap-
ter 2, each with slightly different preprocessing procedures denoted by:

• (B): base data set.

• (X): base data set transformed using Algorithm 1.

• (V): base data set with additional volatility indicators.

• (XV): base data set transformed using Algorithm 1 with additional volatility indica-
tors.

The models here have 64 (68 for ones with volatility indicators) visible units and 30 hidden
units (the same as in [5]) to act as regularized autoencoders. We use a mini-batch size of 10,
and an initial learning rate of 10−3 that decays by a factor of half every 1000 epochs after
epoch 5000 as defined in Appendix A.3, for a total of 104 epochs. We base the models on a
modified version of scikit-learn’s [14] BernoulliRBM class, which we forked 2 to implement
the ability to use a learning rate schedule with the BernoulliRBM class.

One of the drawbacks of the RBM is that it is not easy to track the training progress
for our use case, as the pseudolikelihood metric implemented by the scikit-learn package
is not necessarily a good proxy for our models’ performances. The Kullback-Leibler (KL)
divergence of pmodel from pdata, denoted DKL(pdata ∥ pmodel), is a suitable quantity to
track model performance as it measures the information loss associated with using the
model distribution pmodel to approximate the data set distribution pdata (more information
in Appendix A.5). However, due to the high number of epochs and the thermalization
requirements of samples generated by the RBM, this is not very feasible because generating
samples to compute the KL divergence every epoch significantly increases model training
times. Therefore, we only present the final results of the models.

3.2.2 Results

Autocorrelations

As mentioned before, the classical RBM sampling method is based on an MCMC algorithm,
and thus samples produced via this method are autocorrelated. Therefore, we first examine
the autocorrelations to see how dependent samples are on the previous, so that we can get
an idea of how many Gibbs steps are needed between samples to consider them statistically

2https://github.com/cameronperot/scikit-learn/

14

independent. We use Gibbs sample chains of length 108 for this analysis. More information
about the autocorrelation function and time can be found in Appendix A.4.

Fig. 3.3 shows the autocorrelation functions for the various models and currency pairs.
It is immediately clear that the autocorrelations fall off much sooner for the models trained
on the transformed data sets for all currency pairs. This observation is confirmed by
examining the integrated autocorrelation times in Table 3.1.

It is not immediately clear why the transformed data sets lead to such shorter integrated
autocorrelation times, but this is a welcome trend as it means that less sampling steps are
required to reach thermalization.

Figure 3.3: Autocorrelation functions of the RBM models.

Integrated Autocorrelation Times

Currency Pair RBM (B) RBM (X) RBM (V) RBM (XV)

EURUSD 295.7 147.5 267.4 129.2
GBPUSD 307.0 173.2 308.9 121.6
USDCAD 340.6 120.0 258.8 91.3
USDJPY 33.9 46.7 28.8 36.7

Table 3.1: Integrated autocorrelation times of the RBM models.

The results in the rest of this section are derived from an ensemble of 100 sample sets
consisting of 104 samples each, and 104 Gibbs sampling steps between samples to ensure
thermalization.

15

Marginal Distributions

To get an idea of how well the models perform, we examine the KL divergences of the
marginal distributions of each currency pair in Table 3.2. Here we observe that all models
reproduce the marginal distributions quite well, but the models trained on the trans-
formed data sets perform slightly better, particularly on the USDCAD marginal. The
performance of the models on the marginal distributions is also visualized with Q-Q plots
in Fig. 3.4. More information on how the KL divergences are computed can be found
in Appendix A.5.1.

DKL(pdata || pmodel)

Currency Pair RBM (B) RBM (X) RBM (V) RBM (XV)

EURUSD 0.010 ± 0.001 0.007 ± 0.001 0.011 ± 0.002 0.009 ± 0.001
GBPUSD 0.007 ± 0.001 0.006 ± 0.001 0.011 ± 0.001 0.007 ± 0.001
USDCAD 0.017 ± 0.002 0.007 ± 0.001 0.015 ± 0.002 0.008 ± 0.001
USDJPY 0.008 ± 0.001 0.007 ± 0.001 0.010 ± 0.001 0.009 ± 0.001

Mean 0.010 ± 0.001 0.007 ± 0.001 0.011 ± 0.002 0.008 ± 0.001

Table 3.2: KL divergences of the RBM models. The values are shown in the format mean
± one standard deviation from an ensemble of 100 sample sets consisting of 104 samples
each.

Correlations

The distribution is in a sense more than just the sum of its parts. Beyond learning the
marginal distributions, the models should also capture the correlations between the cur-
rency pairs. To verify this, we turn to the correlation coefficients in Table 3.3 to see how
well the models capture the correlations. We find that the models reproduce the structure
of the correlation coefficients reasonably well, with the models trained on the transformed
data sets encoding more of the behavior.

Volatilities

Examining the historical volatilities in Table 3.4 confirms the models can produce synthetic
data with similar volatilities to the training data set, albeit marginally higher in all cases.

Tails

It is extremely important for the models to learn the tail events because these play a
crucial role in financial risk management. The models trained on the transformed data
sets reproduce the lower tails a little better for most currency pairs, but overestimate some
of the upper tails. It is difficult to say overall if one model performs better than another
here, as it really depends on what one wants to do with the generated data.

We also study the tail concentration functions (see Appendix A.6 for definitions and in-
terpretations) between currency pairs in Fig. 3.5. Here we see that all models perform quite
well for the most part except for a few of the extreme regions in the EURUSD/GBPUSD,
EURUSD/USDJPY, and GBPUSD/USDJPY plots.

16

Figure 3.4: Log return Q-Q plots of the RBM models for each currency pair. Note that
these plots only use the same number of samples as the size of the training data set (5165),
and thus are not entirely representative of the models’ performances.

Conditional Sampling

For the data sets with additional volatility indicators, we have the ability to condition on
these indicators to sample from a specific volatility regime. This is useful, for example, if
we are trying to generate real-world data that fits the current volatility landscape.

This leads us to look at the conditional volatilities, i.e., seeing how well the models
reproduce the volatilities from the two volatility regimes. Laid out in Table 3.6, we observe
that the samples produced by the RBMs have slightly lower (higher) volatilities in the high
(low) regime, but are overall in good agreement with the data set.

3.2.3 Summary

The classical RBM results presented in this section are in line with those obtained by
Kondratyev and Schwarz in [5], and the differences can likely be accounted for by the
different data sets used in training (e.g., different sources, different filtering, etc.), model

17

Correlation Coefficients

Data Set RBM (B)

Currency Pairs Pearson Spearman Kendall Pearson Spearman Kendall

EURUSD/GBPUSD 0.62 0.62 0.44 0.48 ± 0.01 0.53 ± 0.01 0.38 ± 0.01
EURUSD/USDCAD -0.44 -0.41 -0.29 -0.33 ± 0.01 -0.34 ± 0.01 -0.24 ± 0.01
EURUSD/USDJPY -0.26 -0.30 -0.21 -0.21 ± 0.01 -0.25 ± 0.01 -0.17 ± 0.01
GBPUSD/USDCAD -0.42 -0.37 -0.26 -0.31 ± 0.01 -0.33 ± 0.01 -0.22 ± 0.01
GBPUSD/USDJPY -0.14 -0.21 -0.15 -0.15 ± 0.01 -0.18 ± 0.01 -0.13 ± 0.01
USDCAD/USDJPY 0.00 0.06 0.04 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.01

RBM (X) RBM (V)

Currency Pairs Pearson Spearman Kendall Pearson Spearman Kendall

EURUSD/GBPUSD 0.56 ± 0.01 0.59 ± 0.01 0.42 ± 0.01 0.48 ± 0.01 0.54 ± 0.01 0.38 ± 0.01
EURUSD/USDCAD -0.39 ± 0.01 -0.39 ± 0.01 -0.27 ± 0.01 -0.34 ± 0.01 -0.36 ± 0.01 -0.25 ± 0.01
EURUSD/USDJPY -0.24 ± 0.01 -0.29 ± 0.01 -0.19 ± 0.01 -0.20 ± 0.01 -0.23 ± 0.01 -0.16 ± 0.01
GBPUSD/USDCAD -0.36 ± 0.01 -0.35 ± 0.01 -0.24 ± 0.01 -0.30 ± 0.01 -0.33 ± 0.01 -0.22 ± 0.01
GBPUSD/USDJPY -0.16 ± 0.01 -0.20 ± 0.01 -0.13 ± 0.01 -0.14 ± 0.01 -0.17 ± 0.01 -0.12 ± 0.01
USDCAD/USDJPY 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01

RBM (XV)

Currency Pairs Pearson Spearman Kendall

EURUSD/GBPUSD 0.54 ± 0.01 0.59 ± 0.01 0.42 ± 0.01
EURUSD/USDCAD -0.39 ± 0.01 -0.38 ± 0.01 -0.26 ± 0.01
EURUSD/USDJPY -0.22 ± 0.01 -0.27 ± 0.01 -0.19 ± 0.01
GBPUSD/USDCAD -0.36 ± 0.01 -0.36 ± 0.01 -0.24 ± 0.01
GBPUSD/USDJPY -0.16 ± 0.01 -0.20 ± 0.01 -0.13 ± 0.01
USDCAD/USDJPY 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01

Table 3.3: Correlation coefficients of the data set vs. samples generated by the RBM
models. The RBM values are shown in the format mean ± one standard deviation from
an ensemble of 100 sample sets consisting of 104 samples each.

Historical Volatilities

Currency Pair Data Set RBM (B) RBM (X) RBM (V) RBM (XV)

EURUSD 9.78% 9.98% ± 0.11% 10.10% ± 0.10% 10.18% ± 0.11% 10.27% ± 0.10%
GBPUSD 8.98% 9.34% ± 0.11% 9.38% ± 0.12% 9.55% ± 0.12% 9.53% ± 0.11%
USDCAD 8.56% 8.98% ± 0.13% 9.01% ± 0.11% 9.29% ± 0.13% 9.12% ± 0.12%
USDJPY 10.02% 10.26% ± 0.13% 10.42% ± 0.14% 10.82% ± 0.16% 10.46% ± 0.12%

Table 3.4: Historical volatilities of the data set vs. samples generated by the RBM models.
The RBM values are shown in the format mean ± one standard deviation from an ensemble
of 100 sample sets consisting of 104 samples each.

hyperparameters, and the stochastic nature of the models. This further confirms that the
RBM is performant and can be used to generate synthetic data from distributions with
intricate structures, such as the correlations and volatilities seen here.

Overall it is difficult to say if one of the models performs better than the others, as it
depends on the desired use case, but the models trained on the transformed data sets do
yield lower KL divergence values and capture more of the correlations between currency
pairs. This offers evidence that the results might be able to be further improved through the
use of more advanced data preprocessing methods. We do not investigate these possibilities
any further though, given that this is not the main scope of this thesis. The results in this
section act mainly as a point of reference to compare the quantum models within the next
chapter.

18

Lower Tails (1st Percentile)

Currency Pair Data Set RBM (B) RBM (X) RBM (V) RBM (XV)

EURUSD -1.64% -1.80% ± 0.04% -1.68% ± 0.05% -1.90% ± 0.05% -1.76% ± 0.06%
GBPUSD -1.47% -1.59% ± 0.04% -1.57% ± 0.05% -1.63% ± 0.05% -1.66% ± 0.06%
USDCAD -1.40% -1.54% ± 0.05% -1.57% ± 0.06% -1.59% ± 0.05% -1.58% ± 0.06%
USDJPY -1.70% -2.03% ± 0.07% -1.92% ± 0.06% -2.17% ± 0.09% -1.96% ± 0.06%

Upper Tails (99th Percentile)

Currency Pair Data Set RBM (B) RBM (X) RBM (V) RBM (XV)

EURUSD 1.62% 1.59% ± 0.04% 1.84% ± 0.06% 1.70% ± 0.04% 1.81% ± 0.05%
GBPUSD 1.42% 1.45% ± 0.04% 1.54% ± 0.04% 1.53% ± 0.03% 1.57% ± 0.04%
USDCAD 1.51% 1.61% ± 0.04% 1.53% ± 0.05% 1.60% ± 0.05% 1.56% ± 0.05%
USDJPY 1.59% 1.56% ± 0.04% 1.60% ± 0.05% 1.61% ± 0.04% 1.61% ± 0.05%

Table 3.5: Lower and upper tails, i.e., 1st and 99th percentiles, of the data set vs. samples
generated by the RBM models. The RBM values are shown in the format mean ± one
standard deviation from an ensemble of 100 sample sets consisting of 104 samples each.

Conditional Volatilities

Low Regime High Regime

Currency Pair Data Set RBM (V) RBM (XV) Data Set RBM (V) RBM (XV)

EURUSD 6.72% 7.67% ± 0.23% 7.60% ± 0.24% 13.04% 13.19% ± 0.31% 12.92% ± 0.27%
GBPUSD 6.67% 7.45% ± 0.21% 7.50% ± 0.22% 12.69% 12.13% ± 0.31% 11.61% ± 0.28%
USDCAD 6.05% 6.72% ± 0.22% 6.40% ± 0.21% 12.86% 12.53% ± 0.37% 12.14% ± 0.30%
USDJPY 7.36% 9.01% ± 0.32% 8.76% ± 0.27% 13.15% 12.63% ± 0.38% 12.41% ± 0.31%

Table 3.6: Conditional historical volatilities of the data set vs. samples generated by the
RBM models. The RBM values are shown in the format mean ± one standard deviation
from an ensemble of 100 sample sets consisting of 104 samples each.

19

Figure 3.5: Tail concentration functions of the data set vs. samples generated by the RBM
models.

20

Chapter 4

The Quantum Boltzmann Machine

4.1 Theory

The Quantum Boltzmann Machine detailed here is based on the work in Quantum Boltz-
mann Machine by Amin et al. [15]. In this section we use spin eigenvalues +1 and −1
rather than binary values 0 and 1, respectively, in order to maintain consistency with the
language of quantum mechanics. We start with the n-qubit Hamiltonian

H = −
n∑

i=1

Γiσ
x
i −

n∑
i=1

biσ
z
i −

n∑
i=1

n∑
j=i+1

wijσ
z
i σ

z
j , (4.1)

where

σx
i = I⊗i−1 ⊗ σx ⊗ I⊗n−i,

σz
i = I⊗i−1 ⊗ σz ⊗ I⊗n−i,

(4.2)

with σx and σz being the Pauli x and z matrices, and I being the 2×2 identity matrix. We
denote the first nv qubits as the visible units and the last nh qubits as the hidden units,
thus we have a total of nv + nh = n qubits.

The system’s distribution is modeled by the density matrix

ρ =
1

Z
e−H , (4.3)

where e−H =
∑∞

n=0
1
n!(−H)n is the matrix exponential, and Z = tr(e−H) is the partition

function. The probability to observe the system in state |v,h⟩ is given by

p(v,h) = tr(|v,h⟩ ⟨v,h| ρ), (4.4)

and if we define the projection operator

Λv = |v⟩ ⟨v| ⊗ I⊗nh , (4.5)

then the marginal probability to measure the visible units in state |v⟩ is given by

p(v) = tr(Λvρ). (4.6)

Using the probabilities above we can obtain the log-likelihood, which for data set dis-
tribution pdata and parameters θ = (W,a,b) is

ℓ(θ) =
∑
v

pdata(v) log tr(Λvρ), (4.7)

where
∑

v denotes the sum over all possible configurations of v.

21

4.1.1 Optimizing a QBM

When optimizing a QBM, it is preferable to maximize the lower bound of the log-likelihood
rather than maximizing the log-likelihood itself. The reason for this is that the partial
derivative of the log-likelihood with respect to the parameters has a term which is compu-
tationally expensive to compute, as discussed in Appendix C.1. The lower bound of the
log-likelihood is given by (see Appendix C.2 for derivation)

ℓ̃(θ) =
∑
v

pdata(v) log tr(ρv), (4.8)

where we have what is referred to as the clamped Hamiltonian, which for a given visible
vector v is

Hv = ⟨v|H|v⟩ , (4.9)

with corresponding clamped density matrix

ρv =
1

Zv
e−Hv , (4.10)

and Zv = tr(e−Hv). This is called clamped because the visible qubits are held to the
classical state of the visible vector v.

The associated derivatives with respect to the parameters of the lower bound are given
by (see Appendix C.3 for derivation)

∂wij ℓ̃(θ) = ⟨σz
i σ

z
j ⟩data − ⟨σz

i σ
z
j ⟩model,

∂bi ℓ̃(θ) = ⟨σ
z
i ⟩data − ⟨σz

i ⟩model,
(4.11)

where ⟨ · ⟩data is the expectation value with respect to the data set, and ⟨ · ⟩model is the
expectation value with respect to the original density matrix.

If connections are restricted within the hidden layer, then the hidden unit probabili-
ties are independent in the positive phase and can be computed easily, as shown in Ap-
pendix C.3. This leads to positive phase expectation values of

⟨σz
i ⟩data =

∑
v

pdata(v)vi, i ∈ Iv,

⟨σz
i ⟩data =

∑
v

pdata(v)
b′i(v)

Di(v)
tanh

(
Di(v)

)
, i ∈ Ih,

⟨σz
i σ

z
j ⟩data =

∑
v

pdata(v)vivj , i, j ∈ Iv,

⟨σz
i σ

z
j ⟩data =

∑
v

pdata(v)vi
b′j(v)

Dj(v)
tanh

(
Dj(v)

)
, i ∈ Iv, j ∈ Ih,

(4.12)

where b′i(v) = bi + (W
⊺
v)i, Di(v) =

√
Γ2
i + b′i(v)

2, Iv = {1, . . . , nv} represents the visible
qubit indices, and Ih = {nv + 1, . . . , n} represents the hidden qubit indices.

4.1.2 Quantum Annealing

Quantum annealing, also known as adiabatic quantum computing, is a branch of quantum
computing that is based on the adiabatic theorem, which in the (translated) words of
Born and Fock [16]: "A physical system remains in its instantaneous eigenstate if a given
perturbation is acting on it slowly enough and if there is a gap between the eigenvalue

22

and the rest of the Hamiltonian’s spectrum." This can be achieved by implementing a
Hamiltonian of the form [17]

H(s) = A(s)Hinitial +B(s)Hfinal, (4.13)

where s ∈ [0, 1]. For a linear anneal schedule s(t) = t/ta, where ta is the annealing time.
Hinitial is the initial Hamiltonian which describes the system at s = 0 and is responsible
for introducing quantum fluctuations. Hfinal is the final Hamiltonian which describes the
system at s = 1 and is responsible for encoding the problem defined by the user.

The functions A(s) and B(s) must be such that they satisfy the relations

A(0)≫ B(0),

A(1)≪ B(1).
(4.14)

In essence, a quantum annealer starts in the ground state of the initial Hamiltonian,
then slowly evolves the system over time so that it remains in the instantaneous ground
state. By the time the annealing process is completed, the Hamiltonian is just that of
the problem, and if the system evolved adiabatically, then it should have remained in the
instantaneous ground state. Therefore, when the qubits are measured at the end, they
should correspond to a low energy solution of the final Hamiltonian.

D-Wave Quantum Annealer

D-Wave quantum annealers implement a time-dependent Hamiltonian of the form [18]

H(s) = A(s)

(
−

n∑
i=1

σx
i

)
+B(s)

(n∑
i=1

hiσ
z
i +

n∑
i=1

n∑
j=i+1

Jijσ
z
i σ

z
j

)
. (4.15)

From this we see the initial Hamiltonian has the ground state where all qubits are aligned
in the x-direction, i.e., |+⟩⊗n, which corresponds to an equal superposition of all possible
states in the computational basis. The final Hamiltonian corresponds to the Ising model
described by the hi and Jij values.

The quantum processing unit (QPU) is made up of superconducting qubits under the
influence of external magnetic fluxes [17] that change the Hamiltonian from the initial to
the final over the duration of the annealing process. These qubits are arranged in a graph
structure similar to that seen in Fig. 4.1. The default anneal schedule for the D-Wave
Advantage 4.1 is shown in Fig. 4.2

Mapping the QBM to the D-Wave Quantum Annealer

As stated in [15], in order get a quantum annealer to sample from a quantum Boltzmann
distribution, one would need to freeze the evolution at some point s∗ during the annealing
process and then perform the measurements. The authors go on to say that this can be done
in practice using a nonuniform s(t) that anneals slowly in the beginning, then quenches
the system (completes the annealing as fast as possible) at the freeze-out point s∗, if s∗

is in the quasistatic regime. In an earlier paper [21], Amin showed that the quasistatic
regime begins around 1 µs for the D-Wave 2000Q, so it should not be an issue to reach the
quasistatic regime for annealing times longer than 5 µs.

Because a quantum annealer is a real-world physical device, samples generated with it
have an associated temperature called the effective temperature. To be more specific, the
corresponding density operator is of the form

ρ(s, T) =
1

Z
e−βH(s), (4.16)

23

Figure 4.1: A lattice with 4× 4 Pegasus unit cells (P4). The D-Wave Advantage QPU is
based on a lattice with 16× 16 Pegasus unit cells (P16) [19].

Figure 4.2: Default anneal schedule of the D-Wave Advantage 4.1 with linear s(t) = t/ta
and ta = 20 µs [20].

24

where β = 1/kT is the effective inverse temperature. In principle, β is an unknown quantity
and must be determined in order to effectively use the annealer to generate samples from
a quantum Boltzmann distribution.

Comparing the density operator of the QBM in Eq. (4.3) to the one in Eq. (4.16) at
the freeze-out point s∗, we find

Γi = βA(s∗),

bi = −βB(s∗)hi,

wij = −βB(s∗)Jij .

(4.17)

This enables us to map the QBM to the annealer if β can be determined to some reasonable
degree of accuracy.

Learning the Effective Inverse Temperature

There is the possibility to treat β as a learnable parameter rather than having to choose
a value empirically, as detailed by Xu and Oates in [22]. The method is based on a
log-likelihood maximization approach leading to parameter updates of the form (see Ap-
pendix C.4 for how one arrives at this result)

∆β̂ =
ηβ̂

β̂2

(
⟨E⟩data − ⟨E⟩model

)
, (4.18)

where β̂ = 1/kT̂ is the estimator of the effective inverse temperature, and ηβ̂ is the associ-
ated learning rate. In practice, we forego the factor of β̂2 in the denominator for simplicity
and to keep a similar form to the other gradient updates. We must note though, that this
approach is only valid for classical Boltzmann distributions, but this fits our current use
case as we will see in Section 4.2.1.

D-Wave Ocean SDK

D-Wave offers an easy-to-use Python package called Ocean SDK [23] to interact with their
Leap [1] cloud-based quantum annealing platform, which allows users to access various
quantum annealers and other solvers around the globe.

One of the most important steps in solving a problem using a D-Wave annealer is
finding an embedding, i.e., a mapping of the logical qubits to the physical qubits, and
the SDK offers a heuristic method to do so. If the problem cannot be directly embedded
(1:1 logical:physical qubits), then a cluster of physical qubits called a chain is created to
represent one logical qubit. Chains introduce added complexity into the problem, because
one then needs to tune the chain strength, i.e., the coupling constant between the qubits
in the chains. If the measured values of the qubits in a chain differ, this is called a chain
break, and the system will report back the majority vote of the measured values in the
chain. Therefore, it is best to avoid chains if possible, but they are often a necessary evil
for larger problems due to connectivity limitations.

Samples can be easily generated by the annealer using the sample_ising(h, J)
function which takes in the user-defined hi and Jij values and returns a sample set of
specified size (maximum 104). The returned sample set contains the sampled state vectors
(an array of shape (nsamples, n) with values ±1 corresponding to the qubit measurements),
their energies, and other information about the run.

It must be noted that for the purposes of using a D-Wave annealer for quantum Boltz-
mann sampling, one must disable autoscaling to properly estimate the effective tempera-
ture, as per Eq. (4.17). The sample_ising(h, J) function has the keyword argument

25

autoscale=True, which rescales the hi and Jij values by the factor [24]

rautoscale = max

{
max

{
max{hi}

max{hrange}
, 0

}
,max

{
min{hi}

min{hrange}
, 0

}
,

max

{
max{Jij}

max{Jrange}
, 0

}
,max

{
min{Jij}

min{Jrange}
, 0

}}
.

(4.19)

This is because the main use case of D-Wave annealers is to maximize the probability of
measuring the ground state, thus the problem is rescaled so that the hi and Jij values
fully utilize the allowed range of values, essentially decreasing the effective temperature;
therefore, we set autoscale=False to avoid this. For the Advantage 4.1 system the
allowed value ranges are hrange = [−4, 4] and Jrange = [−1, 1] [25].

Generating More Robust Statistics

QPUs are not perfect, and sometimes specific qubits or parts of the chip might have readout
biases. To mitigate such issues, one can perform a gauge transformation on the problem.
If we have an n-qubit problem, then we can generate a random vector r ∈ {+1,−1}n which
allows us to change the submission to the solver without actually changing the underlying
problem. This is done by taking

hi → rihi,

Jij → rirjJij ,

(s1, . . . , sn)→ (r1s1, . . . , rnsn),

(4.20)

and then transforming the results back using the third relation above, where si is the
measured value of qubit i.

Previous Work in This Field

In recent years, a number of researchers have studied using D-Wave quantum annealers to
train Boltzmann machines [22, 26–33]. The most common approach is to train a classical
RBM with quantum assistance, i.e., using the annealer to generate the samples in the
negative phase rather than using Gibbs sampling. Classical RBMs trained with quantum
assistance are a special case of the QBM, i.e., when s∗ = 1 the problem reduces to a
classical RBM because lims→1 Γi = 0 in Eq. (4.17).

One thing that stands out the most about some of the previous research is that very
few discuss embeddings and anneal schedules, which as we will see in the next section are
important for getting the best possible performance out of the annealer. Therefore, we
aim to create a basic framework with which one can use to approach the problem of using
a D-Wave annealer to sample from a (quantum) Boltzmann distribution.

4.2 12-Qubit Problem

In order to get a better understanding of how the QBM works, we study a small 12-qubit
problem that can be solved exactly. For this purpose we take a QBM with restrictions in
both the visible and hidden layers and train it using the log-likelihood lower bound maxi-
mization approach; we call this a bound-based quantum restricted Boltzmann machine, or
BQRBM for short. We configure the model with 8 visible and 4 hidden units to act as a
regularized autoencoder.

26

4.2.1 Sampling From a Quantum Boltzmann Distribution

Before training the model, we first need to assess the Advantage 4.1’s ability to sample
from quantum Boltzmann distributions. To this end, we randomly generate the values of
hi and Jij from a normal distribution with µ = 0 and σ = 0.1, then use the KL divergence
to compare samples generated by the Advantage 4.1 with theoretical distributions.

Anneal Schedule Format

The A(s) and B(s) values for a D-Wave annealer are fixed and depend on the specific
system [20], but the Ocean SDK allows us to define a nonuniform s(t) using a list of (t, s)
tuples, which then determine the A(s(t)) and B(s(t)) curves. In this section we use what
we call pause-and-quench anneal schedules that

1. start at (t = 0, s = 0),

2. pause the system at (tpause, spause) for a duration of ∆pause,

3. quench the system at (tquench, squench) over a duration of ∆quench.

Thus, the anneal schedules provided to the solver are of the form

[(0, 0), (tpause, spause), (tquench, squench), (tquench +∆quench, 1)], (4.21)

where

squench ≡ spause,

tpause = spause · trelative,

tquench = tpause +∆pause.

(4.22)

An annotated example of a custom pause-and-quench anneal schedule with squench = 0.55,
trelative = 20 µs, and ∆pause = 10 µs is given in Fig. 4.3.

The minimum quench duration ∆quench is a function of squench and is limited by the
system’s fastest anneal rate αquench

∆quench(squench) =
1− squench

αquench
. (4.23)

The Advantage 4.1 system allows a maximum of αquench = 2 µs−1 [24].

Verifying the Distribution

We use the KL divergence DKL(ptheory ∥ psamples) to compare the probabilities of the ener-
gies computed from the samples returned by the Advantage 4.1 with the theoretical energy
distributions for s = 0.01, 0.02, . . . , 1 and T = 10−3, 2, 4, . . . , 200 mK, which we visualize as
heatmaps in Fig. 4.4. More information on how the KL divergences are computed can be
found in Appendix A.5.1, how the density matrix (from which the theoretical distributions
are obtained) is computed in Appendix A.7, and the required constants in Appendix A.8.

In the right heatmap, where squench = 0.55, we observe a narrow band in which the
Advantage 4.1-generated samples closely resemble a quantum Boltzmann distribution, and
in fact the samples approximate multiple distributions depending on the effective temper-
ature. Marshall et al. present similar results using a D-Wave 2000Q in [34], in which
they discuss if the distribution returned by the annealer fits that of a quantum Boltzmann
distribution late in the anneal process when A(s∗)/B(s∗)≪ 1, then the distribution at s∗

should be close to a classical Boltzmann distribution, i.e.,

e−βH(s∗) ≈ e−βB(s∗)Hfinal . (4.24)

27

Figure 4.3: Example of a custom pause-and-quench anneal schedule for the D-Wave
Advantage 4.1 [20]. Annotations indicate the points (t, B(s(t))), as well as the periods
over which the annealing is paused and quenched.

This in turn means that not only is there one optimal s∗ and effective temperature which
models the distribution, but rather a set of them corresponding to a family of distributions
for which βB(s∗) is constant. Therefore, this explains the streak pattern in the heatmaps.

Furthermore, we observe that the left heatmap, where squench = 0.25, is quite similar to
the right one where squench = 0.55, but with higher KL divergence values and temperatures.
This indicates that quenching at squench = 0.25 produces samples that are distributed more
as a classical Boltzmann distribution, and that we cannot generate samples from quantum
Boltzmann distributions with s∗ ⪅ 0.45, at least not with the anneal schedules we use here.

It must also be noted that the effective temperature corresponding to the classical
Boltzmann distribution (s∗ = 1) is significantly higher than that of the D-Wave temper-
ature of TDW = 15.4 ± 0.1 mK [1]1. It is not entirely clear exactly why the effective
temperature of the distribution is so much higher than the device temperature, but in [34]
they give several possible reasons, including the discrepancy between the temperature of
the device and the qubits, fluctuations in the temperature while annealing, and control
errors masquerading as higher temperatures. In principle, higher effective temperatures
are unwanted because they shrink the range of allowed values for the weights and biases
as per Eq. (4.17), but there is not much one can do about this.

From analysis of the heatmaps and the fact that we cannot produce distributions with
s∗ ⪅ 0.45, we conclude that nontrivial dynamics occur while the system is quenching,
i.e., the system cannot quench fast enough. It is difficult to compare directly since the
2000Q is a different system than the Advantage 4.1 we study here, but in [34] they also
allude to the possibility of nontrivial dynamics occurring. The 2000Q allows for quenching
with αquench = 1, which is only a factor of two smaller than that of the Advantage 4.1.
Therefore, if as supposed in [34] that the quench is not fast enough, then likely such a
small difference in how fast the system can be quenched would not drastically change the

1Temperature obtained from the system properties in the Leap interface.

28

Figure 4.4: Heatmaps of DKL(ptheory ∥ psamples) comparing the distribution produced by
samples from the D-Wave Advantage 4.1 to a set of theoretical QBM distributions for two
different quench points using embedding 10. The dashed lines represent the optimal values
of B(s)/T = constant, computed by taking the value of T which produces the lowest KL
divergence for each s ≥ 0.5. Data represents an ensemble average over 10 random gauge
sample sets consisting of 104 samples each.

results.
If we take a second to think about it, the qubits are oscillating at a frequency in terms of

gigahertz. This means that a quench duration of a few hundred nanoseconds still allows for
a number of oscillations in the qubits, which is likely enough time for nontrivial dynamics
to take place. It would be interesting to verify via simulation how fast a quench must be
in order to freeze out the distribution at the desired point s∗.

We conclude that we are unable to reliably generate arbitrary quantum Boltzmann
distributed samples using the Advantage 4.1 system. Therefore, for the remainder of
this thesis we focus on training models with s∗ = 1 using classical Boltzmann distributed
samples generated by the Advantage 4.1, also enabling us to use the aforementioned method
of learning the effective temperature.

Choosing an Embedding

We compare 10 different heuristically generated embeddings based on how well they ap-
proximate the desired distribution. In this embedding comparison, we use only direct
embeddings (no chains), so the embeddings only differ by the location of the qubits on the
chip, and pause-and-quench anneal schedules with trelative = 20 µs and ∆pause = 0 µs.

It is difficult to compare the heatmaps of all embeddings and quench points due to
the higher dimensionality of the data, so we take the minimum KL divergence over s and
T , and plot it as a function of squench in Fig. 4.5. We immediately see how varied the
results are depending on the embedding and quench point, highlighting the importance of
choosing a good embedding and anneal schedule.

Our findings indicate that embedding 10 is likely a good choice because it produces the
best results at squench = 0.55. The rest of the results in this subsection use embedding 10.

Choosing an Anneal Schedule

With the chosen embedding we want to see if there is a way in which we can alter the
anneal schedule to further reduce the KL divergence. We start with the same anneal

29

Figure 4.5: Comparison of mins,T
{
DKL(ptheory ∥ psamples)

}
for different embeddings and

squench values. Data represents an ensemble average over 10 random gauge sample sets
consisting of 104 samples each. Shaded regions represent one standard deviation.

schedule formula as before, except we introduce pausing before initiating the quench for
durations ∆pause = 0, 10, 100 µs, as well as the addition of trelative = 100 µs.

Fig. 4.6 illustrates that pausing and longer annealing times have little effect, and that
quenching in the range of squench ∈ [0.55, 0.6] produces the best results. With this in-
formation, we opt to use an anneal schedule with squench = 0.55, trelative = 20 µs, and
∆pause = 0 µs, as it offers a good balance between performance and QPU usage time.

4.2.2 Training Data

Having verified that the Advantage 4.1 can indeed produce Boltzmann distributed samples
to some degree of accuracy, we proceed with training models using both a simulation
and the Advantage 4.1. We randomly generate a training data set consisting of 1500
samples, 1000 from a N (−2, 1) distribution and 500 from a N (3, 1) distribution, visualized
in Fig. 4.7.

4.2.3 Simulation-based Model

The first step is training a model using a simulation in which the samples are generated
using the probabilities obtained from computing ρ exactly. Here we use a mini-batch size
of 10, s∗ = 1, and an initial learning rate of η = 0.1 with a schedule that exponentially
decays the learning rate every 10 epochs by a factor of 2 beginning at epoch 50 as defined
in Appendix A.3. The learning rate ηβ̂ for the parameter β̂ follows a similar schedule,
except it has a decay period of 20 as opposed to 10, to allow for more range of motion in
the β̂ parameter later in the training process if the estimate needs to adapt more quickly
to a new effective β.

30

Figure 4.6: Comparison of mins,T
{
DKL(ptheory ∥ psamples)

}
for various pause-and-quench

anneal schedules using embedding 10. Data represents an ensemble average over 10 random
gauge sample sets consisting of 104 samples each. Shaded regions represent one standard
deviation. Some of the sample sets with longer annealing times and pause durations contain
less than 104 samples as to satisfy the maximum allowed run time of the D-Wave Advantage
4.1.

Figure 4.7: Histogram of the training data set used in the 12-qubit problem.

31

Results

Fig. 4.8 shows the results of training the simulation-based model on the aforementioned
data set. We use the KL divergence DKL(pdata ∥ pmodel) as a way to track the progress of
the training and get a read on how well the model learns the data set distribution, because
minimizing the KL divergence is equivalent to maximizing the log-likelihood [35]. The KL
divergence is computed at the end of every epoch using a sample set of size 104. In the
left plot of Fig. 4.8, we observe a clear trend of the KL divergence being minimized. The
learning curve reaches an optimal value after about 80 epochs, then remains steady for the
next 20 epochs until the end of training.

Figure 4.8: Training results of the 12-qubit model trained using the simulation. On the
left is the KL divergence DKL(pdata ∥ pmodel) plotted against the epochs; each data point
was generated using 104 samples at the end of every epoch. On the right is the learned
temperature estimator T̂ plotted against the epochs, as well as the effective temperature
that the simulation was configured to generate samples at.

We designed the simulation such that we can set the effective β to any value we desire.
To verify that the model can learn an accurate value for the estimator β̂, we configure the
simulation to generate samples at an effective value of β = 0.5 GHz−1 (T ≈ 96 mK) and
initialize the model with a value of β̂ = 1 GHz−1 (T̂ ≈ 48 mK). The results in the right
plot of Fig. 4.8 confirm that it is able to learn a value of β̂ close to the actual effective β.

Overall, the results show that the model can generate samples similar to the training
distribution reasonably well when trained using the simulation, i.e., the best case scenario.
Additionally, we are able to verify that the model can accurately learn an estimate of the
effective temperature. We use the results of this model as a baseline to compare the models
trained using the Advantage 4.1 in the next subsection with.

4.2.4 D-Wave Advantage 4.1-based Model

Having successfully trained the 12-qubit BQRBM using samples generated via exact sim-
ulation, we move to switching the sample generation part to the Advantage 4.1. We take
the same hyperparameters as the simulation and an anneal schedule using squench = 0.55,
trelative = 20 µs, and ∆pause = 0 µs. We see in Fig. 4.4 that squench = 0.55 has an optimal
temperature of around 90 mK for s∗ = 1, thus we take β̂ = 0.5 GHz−1 (T̂ ≈ 96 mK) as

32

our initial guess for the effective β, and let the model learn from there.

Results

The KL divergences in Fig. 4.9 and Table 4.1 show the model trained using the Advantage
4.1 produces samples that resemble the training distribution to some extent, but still
underperforms when compared with the simulation and the classically trained RBM. This
is possibly due to the information loss associated with using the D-Wave to approximate
the distribution, which likely arises due to noise and errors (see Section 4.4), because
after all, real-world systems governed by quantum mechanics are highly sensitive to their
environment.

Figure 4.9: Training results of the 12-qubit model trained using samples generated with
the D-Wave Advantage 4.1 compared with that of the simulation and the final results of
a classical RBM. On the left is the KL divergence DKL(pdata ∥ pmodel) plotted against the
epochs; each data point was generated using 104 samples at the end of every epoch. On
the right is the learned temperature estimator T̂ plotted against the epochs.

DKL(pdata || pmodel)

BQRBM Advantage 4.1 BQRBM Simulation RBM

0.034 ± 0.014 0.008 ± 0.001 0.015 ± 0.002

Table 4.1: KL divergences of the 12-qubit BQRBM models vs. the classical RBM. The
values are shown in the format mean ± one standard deviation from an ensemble of 100
sample sets consisting of 104 samples each.

We notice that the Advantage 4.1-based model struggles most with the trough between
the two Gaussian peaks in the training distribution based on the Q-Q plots in Fig. 4.10.

Although we cannot track the true effective temperature throughout the training pro-
cess, we are able to see how close the learned effective temperature estimate at the end
matches that generated by samples using the final learned weights and biases. The heatmap
shown in Fig. 4.11 confirms that the Advantage 4.1-based model’s β̂ value of 97.8 mK is
quite close to the 95.6 mK computed from the optimal B(s)/T value.

33

Figure 4.10: Log return Q-Q plots of the 12-qubit model trained using the simulation (left)
and the D-Wave Advantage 4.1 (right).

Figure 4.11: Heatmap of DKL(ptheory ∥ psamples) comparing the distributions produced
by samples from the Advantage 4.1 to a set of theoretical QBM distributions, using the
final hi and Jij values learned by the 12-qubit model trained using the Advantage 4.1. The
blue cross indicates the learned estimate of the effective temperature. The dashed line
represents the optimal value of B(s)/T = constant, computed by taking the value of T
which produces the lowest KL divergence for each s ≥ 0.5. Data represents an ensemble
average over 10 random gauge sample sets consisting of 104 samples each.

The results in this section show that a BQRBM can indeed be trained using a D-Wave
quantum annealer. The 12-qubit problem plays a crucial role in our understanding of
how one can use a D-Wave quantum annealer to generate Boltzmann distributed samples.
Although the results are not spectacular, and underperform the simulation and classical
model, they still show promise. It will be interesting to rerun this analysis on the next

34

generation of D-Wave quantum annealers to see how much they improve.

4.3 The Quantum Market Generator

With deeper insights into the workings of the BQRBM from the 12-qubit problem, we move
to the final stage of training a quantum market generator with 64 visible and 30 hidden
units. All results in this section use the same baseline data set (B) as in Section 3.2.

4.3.1 Setting the Annealer’s Hyperparameters

Unlike the 12-qubit problem, the larger problem restricts our ability to perform an in-
depth analysis to compare the sample distributions produced by the Advantage 4.1 with
that of theory. Therefore, we have to take a more practical approach when choosing
some of the annealer hyperparameters such as the relative chain strength, quench point,
and embedding. To this end, we train a number of models with various settings of these
hyperparameters for 20 epochs to get a read on the trend direction, and then choose their
values empirically. For this, we use a mini-batch size of 10, s∗ = 1, constant learning rates
of η = 0.02 and ηβ̂ = 0.01, and an initial value of β̂ = 0.25 GHz−1 (T̂ ≈ 192 mK).

The reason we only train for 20 epochs is that the epoch duration is quite high (10-25
minutes) due to latency and load on the annealer, ergo it is not very feasible to train
every model for a higher number of epochs. With an average epoch duration of around 15
minutes, training a model for 20 epochs takes roughly 5 hours, so training for 100 epochs
would take around a day.

Choosing a Relative Chain Strength

The chain strength γ is computed using the relative chain strength γrelative as

γ = γrelative ·min
{
max{Jrange},max

{
{|hi|} ∪ {|Jij |}

}}
. (4.25)

We train models using various values of γrelative ∈ [0.3, 2], and a pause-and-quench
anneal schedule with squench = 0.55, trelative = 20 µs, and ∆pause = 0 µs. The results are
plotted in Fig. 4.12 (only a subset depicted). We find that too low values of γrelative lead
to more chain breaks early on in the training process, which then cause the model to learn
a higher temperature, in turn shrinking the allowed range of weights and biases to the
point where the model can no longer learn effectively. Everything indicates that higher
relative chain strengths produce better results. After a number of epochs, we observe
max

{
{|hi|} ∪ {|Jij |}

}
grow to a value larger than 0.5, implying that values of γrelative ≥ 2

would not change the results since γ is reaching its limit of max{Jrange} = 1. Therefore,
we choose a value of γrelative = 2.

Choosing an Anneal Schedule

We keep trelative = 20 µs and ∆pause = 0 µs as in the 12-qubit problem, but check to see if
a different value of squench improves performance. We try values of squench = 0.5, 0.55, 0.6,
plotted in Fig. 4.13, and find that squench = 0.55 leads to the best KL divergence curve,
and thus choose that value going forward.

Choosing an Embedding

The final annealer hyperparameter we seek to tune is the embedding. We try 5 differ-
ent heuristically generated embeddings each composed of around 400 physical qubits and
maximum chain lengths of 7. The comparison plotted in Fig. 4.14 indicates to us that
embedding 1 is likely a good choice to continue with.

35

Figure 4.12: Training results of the relative chain strength γrelative scan for embedding 1.
On the left are the mean marginal DKL(pdata ∥ pmodel) values, i.e., the average of the KL
divergences of the individual currency pairs. On the right are the learned estimates of the
effective temperature. Data plotted on a 5 epoch simple moving average basis to reduce
visual noise.

Figure 4.13: Training results of the squench scan for embedding 1. On the left are the
mean marginal DKL(pdata ∥ pmodel) values, i.e., the average of the KL divergences of
the individual currency pairs. On the right are the learned estimates of the effective
temperature. Data plotted on a 5 epoch simple moving average basis to reduce visual
noise.

4.3.2 Results

With annealer hyperparameters of γrelative = 2, squench = 0.55, and embedding 1, we move
to training a full model over 100 epochs. The training curves are depicted in Fig. 4.15,
where we observe the KL divergence decrease until around epoch 40 where it then oscillates

36

Figure 4.14: Training results comparing 5 different embeddings. On the left are the
mean marginal DKL(pdata ∥ pmodel) values, i.e., the average of the KL divergences of
the individual currency pairs. On the right are the learned estimates of the effective
temperature. Data plotted on a 5 epoch simple moving average basis to reduce visual
noise.

for the remainder of the training process. Unfortunately, the training results show that
the BQRBM model significantly underperforms the classical model.

Figure 4.15: Training results of the BQRBM compared with the final results of the classical
RBM. On the left is the mean marginal DKL(pdata ∥ pmodel) value, i.e., the average of the
KL divergences of the individual currency pairs. On the right is the learned estimate of
the effective temperature.

Poor model performance is further confirmed by the KL divergences in Table 4.2. We
see the KL divergences of the BQRBM are about eight times higher than those of the
classical RBM.

37

DKL(pdata || pmodel)

Currency Pair BQRBM RBM

EURUSD 0.086 ± 0.044 0.010 ± 0.001
GBPUSD 0.062 ± 0.037 0.007 ± 0.001
USDCAD 0.064 ± 0.028 0.017 ± 0.002
USDJPY 0.103 ± 0.037 0.008 ± 0.001

Mean 0.079 ± 0.037 0.010 ± 0.001

Table 4.2: KL divergences of the BQRBM model vs. the classical RBM. The values are
shown in the format mean ± one standard deviation from an ensemble of 100 sample sets
consisting of 104 samples each.

The Q-Q plots in Fig. 4.16 point out that the BQRBM model struggles the most with
the USDJPY and USDCAD marginals.

Table 4.3 show that the BQRBM is able to reproduce the structure of the correlation
coefficients, albeit to a lesser extent than the classical RBM.

Correlation Coefficients

Data Set BQRBM

Currency Pairs Pearson Spearman Kendall Pearson Spearman Kendall

EURUSD/GBPUSD 0.62 0.62 0.44 0.37 ± 0.04 0.44 ± 0.05 0.30 ± 0.04
EURUSD/USDCAD -0.44 -0.41 -0.29 -0.25 ± 0.03 -0.30 ± 0.04 -0.20 ± 0.03
EURUSD/USDJPY -0.26 -0.30 -0.21 -0.12 ± 0.03 -0.16 ± 0.04 -0.11 ± 0.02
GBPUSD/USDCAD -0.42 -0.37 -0.26 -0.24 ± 0.02 -0.28 ± 0.03 -0.19 ± 0.02
GBPUSD/USDJPY -0.14 -0.21 -0.15 -0.12 ± 0.02 -0.15 ± 0.03 -0.10 ± 0.02
USDCAD/USDJPY 0.00 0.06 0.04 0.05 ± 0.02 0.06 ± 0.02 0.04 ± 0.01

RBM

Currency Pairs Pearson Spearman Kendall

EURUSD/GBPUSD 0.48 ± 0.01 0.53 ± 0.01 0.38 ± 0.01
EURUSD/USDCAD -0.33 ± 0.01 -0.34 ± 0.01 -0.24 ± 0.01
EURUSD/USDJPY -0.21 ± 0.01 -0.25 ± 0.01 -0.17 ± 0.01
GBPUSD/USDCAD -0.31 ± 0.01 -0.33 ± 0.01 -0.22 ± 0.01
GBPUSD/USDJPY -0.15 ± 0.01 -0.18 ± 0.01 -0.13 ± 0.01
USDCAD/USDJPY 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.01

Table 4.3: Correlation coefficients of the data set vs. samples generated by the BQRBM
and classical RBM models. The BQRBM and RBM values are shown in the format mean
± one standard deviation from an ensemble of 100 sample sets consisting of 104 samples
each.

Interestingly, the BQRBM is able to reproduce the volatilities for the most part except
for the USDJPY, as seen in Table 4.4.

Table 4.5 shows the quantum model struggles more on the tails, particularly with the
USDJPY, as well as EURUSD. This is further confirmed by the tail concentration functions
in Fig. 4.17.

4.3.3 Comparison to Gate-Based Models

In the paper Quantum Versus Classical Generative Modelling in Finance by Coyle et
al. [36], they use a 32-qubit gate-based quantum computer to train both classical RBMs
and quantum circuit Born machines (QCBMs) on a similar forex log returns data set.
Their work shows that the QCBM produces better results than the RBM, but they mostly
focus on smaller models using 4, 6, 8, and 12 qubits due to the limited number of qubits

38

Figure 4.16: Log return Q-Q plots of the BQRBM and classical RBM models for each
currency pair. Note that these plots only use the same number of samples as the size
of the training data set (5165), and thus are not entirely representative of the models’
performances.

39

Historical Volatilities

Currency Pair Data Set BQRBM RBM

EURUSD 9.78% 10.17% ± 0.79% 9.98% ± 0.11%
GBPUSD 8.98% 8.86% ± 0.47% 9.34% ± 0.11%
USDCAD 8.56% 8.44% ± 0.39% 8.98% ± 0.13%
USDJPY 10.02% 11.58% ± 1.44% 10.26% ± 0.13%

Table 4.4: Historical volatilities of the data set vs. samples generated by the BQRBM
and classical RBM models. The BQRBM and RBM values are shown in the format mean
± one standard deviation from an ensemble of 100 sample sets consisting of 104 samples
each.

Lower Tails (1st Percentile)

Currency Pair Data Set BQRBM RBM

EURUSD -1.64% -2.02% ± 0.24% -1.80% ± 0.04%
GBPUSD -1.47% -1.45% ± 0.12% -1.59% ± 0.04%
USDCAD -1.40% -1.43% ± 0.17% -1.54% ± 0.05%
USDJPY -1.70% -2.32% ± 0.38% -2.03% ± 0.07%

Upper Tails (99th Percentile)

Currency Pair Data Set BQRBM RBM

EURUSD 1.62% 1.70% ± 0.23% 1.59% ± 0.04%
GBPUSD 1.42% 1.49% ± 0.07% 1.45% ± 0.04%
USDCAD 1.51% 1.50% ± 0.12% 1.61% ± 0.04%
USDJPY 1.59% 2.13% ± 0.50% 1.56% ± 0.04%

Table 4.5: Lower and upper tails, i.e., 1st and 99th percentiles, of the data set vs. samples
generated by the BQRBM and classical RBM models. The BQRBM and RBM values are
shown in the format mean ± one standard deviation from an ensemble of 100 sample sets
consisting of 104 samples each.

available. Therefore, it is not exactly a fair comparison against the results of our 94-qubit
model here since the bits of precision are significantly higher, but the BQRBM trained in
this section appears to perform better than their QCBM when comparing the Q-Q plots.

4.3.4 Summary

Overall, the BQRBM model trained using the Advantage 4.1 produces lackluster results
when compared with the classical RBM, and does not motivate training additional models
on the transformed and volatility indicator enhanced data sets. This could possibly be
due to hyperparameters, as our grid search of the space was limited by the training time
requirements, but it is not immediately clear if there is a better way to do this. This could
also be due to the fact that the model is so large that it uses a significant portion of the
QPU and requires chains with lengths of up to 7, resulting in added complexity.

In conclusion, it does not appear that the Advantage 4.1-trained BQRBM can produce
results good enough to replace the classical RBM. It will be interesting to see how much this
improves with future generations of annealers, although it will likely take serious advances
in the technology to outperform the classical RBM.

40

Figure 4.17: Tail concentration functions of the data set vs. samples generated by the
BQRBM and classical RBM models.

41

4.4 Challenges of Using a D-Wave Annealer to Train QBMs

Using a D-Wave quantum annealer to train quantum Boltzmann machines is a difficult task,
and there are many challenges which need to be overcome in order to do so. In this section
we touch on some of these difficulties and discuss some possible methods to mitigate them.
Around the time this thesis was started, Pochart et al. released a paper [37] in which they
discuss challenges associated with using a D-Wave annealer to sample Boltzmann random
variables.

4.4.1 Choosing an Embedding

Mapping the logical qubits to physical qubits is nontrivial. D-Wave provides a heuristic
method to find embeddings, but in practice it cannot be guaranteed that the returned
embedding is optimal. As we saw first hand, different embeddings can produce different
results. Therefore, it is recommended to generate multiple embeddings and compare them
against each other, and choose the one that performs the best. Additionally, it is worth
noting that an optimal embedding on one QPU might not be optimal on another of the
same generation.

Chain Strength

Depending on how large the problem is, one will likely need to use an embedding that is
not direct, i.e., one that requires chains of physical qubits to represent single logical qubits
due to limited connectivity. This brings about an additional hyperparameter that needs
to be tuned. Rather than setting the chain strength directly though, it is recommended to
use the relative chain strength as mentioned in Section 4.3.1. It is best to do a comparison
in the beginning to get an idea of what a good relative chain strength might be, as it is
problem dependent.

4.4.2 Sampling the Proper Distribution

The most important thing when using a quantum annealer to train a Boltzmann machine
is making sure the annealer is sampling from the proper distribution. In the case of the
quantum Boltzmann machine we need samples generated according to ρ = 1

Z e
−βH(s∗).

For smaller problems it is easy to compare results obtained from the annealer with exact
computed distributions (as in the 12-qubit problem), but it is not as simple for larger
problems. For larger problems there is the possibility to use advanced methods, such as
they did in [34] with the use of an entropic sampling technique [38] based on population
annealing to estimate degeneracies, and in turn use those to compute classical Boltzmann
distributions to compare with, but that might not always be practical. Alternatively, one
can try a hyperparameter grid search as in Section 4.3.1

Effective Temperature

One of the most important hyperparameters is that of the effective inverse temperature β.
In practice, we divide our weights and biases by a factor of −β̂B(s∗) (as per Eq. (4.17))
in order to cancel out the effective temperature so that we can sample the problem we
wish to, thus it is crucial for proper parameter scaling. For the case of s∗ = 1 we have the
ability to treat the effective temperature as a learnable parameter (as in Section 4.1.2),
for which we use β̂ as an estimator of. This is not so straightforward for s∗ < 1 though,
because of the initial Hamiltonian and the D-Wave’s inability to measure the qubits in the
x-direction.

42

Anneal Schedules

The ability to configure the anneal schedule as allowed by the D-Wave annealer means
that there are a number of different ways one can tweak the annealing process such that
the results returned minimize the KL divergence between the theoretical distribution one
wishes to approximate and the samples returned by the annealer. In an ideal world, the
way to get the desired distribution is to anneal slowly at first, then quench the system at
the point s∗ and measure the qubits [15]. Unfortunately, the research conducted in this
thesis seems to indicate that the current generation of D-Wave annealers cannot quench
fast enough to prevent any nontrivial dynamics occurring after s∗, and all sample sets we
collected are more similar to classical Boltzmann distributions than quantum ones. With
that said, the annealer can still be used to assist in the training of a classical Boltzmann
machine.

4.4.3 QPU Limitations and Imperfections

The properties of the QPU itself must also be taken into account. There is no doubt
that D-Wave is a top-notch manufacturer of quantum annealers, but even with all of
their expertise the QPUs are still subject to imperfections and errors. It is possible for
some areas of the chip to perform better than others, or for some of the qubits to have
readout biases (although biases can be mitigated by using gauge transformations as detailed
in Section 4.1.2).

Maximum Sample Set Size

One of the main limitations of the D-Wave annealer for this purpose is that of the maximum
sample set size. When sampling, the D-Wave one can only generate sample sets with a
maximum size of 104 samples, which is adequate for the intended purpose of optimization,
but can fall short when one wants to use it as a sampler for a QBM. It is natural to
think that one could just combine the results from multiple sample sets, but this is not
necessarily the case. Due to the spin-bath polarization effect (see error sources below), one
cannot combine sample sets because of the possibility of previous samples affecting future
ones [37].

Time Requirements

Another issue is the time requirements. Most models detailed here require little QPU
access time to train, around 5-10 minutes, but this can add up and get expensive if one is
doing a hyperparameter grid search. Additionally, there is the total training time, which as
we saw can be quite substantial due the latency to the cloud platform combined with the
load queue of the solver. To illustrate this point, training the simulation-based 12-qubit
model takes roughly 2 seconds per epoch (the majority of which is spent computing the
density matrix), whereas the Advantage 4.1-based model takes 2-5 minutes per epoch.

Error Sources

There are a number of sources from which errors can arise on a D-Wave quantum annealer.
D-Wave does an excellent job at detailing these errors in their documentation [39, 40], so
we will only briefly touch on them here with high-level information obtained from the
aforementioned references.

• Integrated Control Errors (ICE) are errors due to the accuracy at which the
hi and Jij values can be implemented. In mathematical terms this is because the

43

problem the QPU solves is closer to

Hδ
Ising =

n∑
i=1

(hi + δhi
)σz

i +
n∑

i=1

n∑
j=i+1

(Jij + δJij)σ
z
i σ

z
j , (4.26)

for some small δhi
and δJij .

• Temperature errors arise due to fluctuations in the physical temperature of the
device, which can change depending on how frequently the QPU is programmed.

• High-Energy Photon Flux errors can occur in the presence of photons with ener-
gies higher than that expected at the effective temperature dependent equilibrium,
which can lead to higher energy solutions. These photons originate from cryogenic
filtering at higher temperature phases.

• Readout Fidelity errors can occur when the bit string returned by the annealer
differs from that arrived at by the QPU by one or more bit flips. For reference,
D-Wave annealers have a readout fidelity of >99%.

• Programming Errors can occur when the problem implemented by the QPU suffers
from programming issues resulting in the implemented problem’s low-energy subspace
not having an overlap with that of the desired problem.

• Spin-Bath Polarization Effect errors can arise when the current flowing through
the qubits during the annealing process causes the spins to obtain a polarization
which can bias the measurements.

44

Chapter 5

Conclusion

5.1 Summary

We started with an analysis of the forex log returns data set in Chapter 2, analyzing the
data from a number of aspects to get an understanding of the intricacies. After that, we
moved to training classical RBM models in Chapter 3, where we were able to produce good
results similar to those in [5]. The outlier power transformation detailed in Section 2.2.1
shows much promise, as models trained on the transformed data sets perform noticeably
better than those trained on the base data sets.

After establishing a classical baseline to compare our quantum models with, we studied
a small 12-qubit problem in Section 4.2, through which we gained a deeper understanding
of how to sample quantum Boltzmann random variables using a D-Wave quantum annealer,
specifically the Advantage 4.1. There, we were able to match sample distributions returned
by the annealer to theoretical distributions from the family of distributions corresponding
to the density operator ρ(s, T) = 1

Z e
−βH(s). Our findings indicate that, with the anneal

schedules and parameters used here, the Advantage 4.1 is not able to sample from just
any quantum Boltzmann distribution, rather only those that are classical Boltzmann-like
in nature. To be more specific, the samples we obtained from the annealer resemble a
subset of the family of distributions that satisfies B(s)/T = constant, as indicated by the
streak patterns observed in Fig. 4.4. This occurs when the distribution is similar to one
late in the anneal process, i.e., when e−βH(s∗) ≈ e−βB(s∗)Hfinal . This is likely due to the
annealer not being able to quench the system fast enough, allowing for nontrivial dynamics
to occur, as the shortest allowed quench durations are still quite long relative to the qubit
oscillation frequency in terms of gigahertz. How closely the annealer can approximate a
desired classical Boltzmann distribution was found to be dependent on both the embedding
and the anneal schedule, thus it is highly recommended to tune these accordingly.

With the information that we can only reliably sample classical Boltzmann distri-
butions, we moved to training a bound-based quantum restricted Boltzmann machine
(BQRBM) with a freeze-out point of s∗ = 1, essentially reducing the problem to a classical
RBM trained using quantum assistance. The difficulty of choosing the effective tempera-
ture was in this case easily circumvented by treating β as a learnable parameter as described
in Section 4.1.2 and verified in Section 4.2.3. We trained BQRBM models using both a
simulation and the Advantage 4.1 annealer, allowing us to compare exactly how close the
Advantage 4.1-trained model is to the theory. Additionally, we trained a classical RBM
to use as a reference point. In short, the BQRBM model trained using the Advantage 4.1
underperforms both the classical RBM and the simulation, as seen in Section 4.2.4. The
simulation-based model shows promise though, outperforming the classical RBM, offering
hope for future annealer-trained models if annealers can further reduce the information
loss associated with sampling (quantum) Boltzmann distributions.

45

Finally, we used the knowledge gained about how to train a small BQRBM and applied
it to training a larger one in Section 4.3 using the log returns data set, mapping 94 logical
qubits to 398 physical qubits with chain lengths of up to 7. This model proved to be more
challenging to train because setting the annealer hyperparameters (chain strength, anneal
schedule, and embedding) cannot be done as in the 12-qubit problem due to the fact that we
cannot simulate such a large system. In practice, we had to choose these values by doing
a limited hyperparameter scan, which was difficult due to increased training times that
averaged around 15 minutes per epoch. Longer epoch times originated from a combination
of solver load and latency from Europe to the North American West Coast. This meant
that training a model for 100 epochs would have taken around a day, and if we wanted to
fully train the models for all hyperparameters in our scan it would have taken weeks.

The results in Section 4.3.2 show that the BQRBM was able to learn to produce syn-
thetic data similar to the log returns data set distribution to some extent, but drastically
underperforms the classical RBM. This could likely have been improved with a more ex-
haustive hyperparameter scan, but that was not necessarily feasible given the time require-
ments, and it is unclear if the results would have been significantly better given that even
the 12-qubit BQRBM trained on the annealer underperforms the classical RBM.

In this thesis we laid out a framework with which one can train quantum Boltzmann
machines using both simulations and D-Wave quantum annealers. As part of this thesis,
the Python package qbm [6] was developed to make it easier to train and study QBMs. This
package is open source and available to the public to encourage further study of QBMs.

Overall, this thesis furthered not only our understanding of QBMs, but that of D-Wave
annealer sampling in general. We hope that this work will be useful for future research
and development.

5.2 Future Directions

Throughout this thesis we came across several directions which we would have liked to
explore more in depth but did not have the time to.

It would be interesting to investigate if adding technical indicators to the log returns
data set could increase model performance. Given that the log returns data set used here
only takes into account the currency pairs’ behavior over one day (excluding the volatility
indicators), technical indicators calculated using data over a historical window could enrich
the data set with vital information to help the model better learn the complexities of the
distribution.

The discretization procedure for converting continuous data into bit vectors could prob-
ably be further improved. As we saw in Section 3.2, the models that used the outlier power-
transformed data sets generate samples with lower KL divergences and better reproduced
the correlations between the currency pairs.

Of most interest is simulating the time-dependent Schrödinger equation of the D-Wave
annealer to determine how fast the system needs to quench in order to freeze out the
dynamics. This would give a good indication of how much quantum annealers need to
improve in order to be able to sample from arbitrary quantum Boltzmann distributions.

Studying additional anneal schedule formats would also be a very interesting direction.
Reverse annealing was tested to a small extent here only to see if it produced drastically
different results than forward annealing, but was left out of the final research because the
results did not show any significant improvements and led to added complexity due to the
need to choose what state the system was initialized in and if the system was reinitialized
to the same state after each measurement or not.

46

Appendix A

Definitions and Methodologies

A.1 Correlation Coefficients

The Pearson correlation coefficient is defined as

ρX,Y =
cov(X,Y)

σXσY
∈ [−1, 1], (A.1)

and measures the linear correlation between the random variables X and Y . Therefore,
it must be noted that this does not capture nonlinear relations, and should not be relied
upon to tell the full story. Additionally, this measure is quite sensitive to outliers.

The Spearman rank correlation coefficient is defined as

rs = ρR(X),R(Y) =
cov

(
R(X), R(Y)

)
σR(X)σR(Y)

∈ [−1, 1], (A.2)

and is the Pearson correlation coefficient of the rank of the random variables X and Y .
The main difference to the Pearson correlation coefficient is that the Spearman measures
the monotonic relationship, regardless of linearity. The Spearman correlation coefficient is
also less sensitive to outliers than the Pearson.

The Kendall rank correlation coefficient is defined as

τ =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

sign(xi − xj)sign(yi − yj) ∈ [−1, 1], (A.3)

where (x1, y1), . . . , (xn, yn) are pairs of observations of the random variables X and Y .
It is important to keep in mind how one interprets the correlation coefficients. The sign

of the correlation coefficient determines whether the variables are negatively or positively
correlated, and the magnitude determines how strong the correlation effects are. As a loose
guide, correlation coefficient values of 0.1, 0.3, and 0.5 can be termed small, medium, and
large, respectively [41]. In general, one must be careful when interpreting the correlation
coefficients; it is important to understand what the values mean, and what they do not.
Section 3.4.2 "Interpreting the Correlation Coefficient" of [41] offers further insight and
points out some pitfalls to watch out for.

In this thesis the correlation coefficients are computed using the respective functions
from the SciPy Python package [42].

A.2 Annualized Volatility

In finance, the annualized volatility of a time series vector x is computed as

vol(x) =
√
252 · std(x), (A.4)

47

where the factor of
√
252 comes from the square root of the number of trading days in a

year, i.e., it’s the annualization factor.

A.3 Learning Rate Decay Schedule

The learning rate at epoch t is given by

η(t) = η(0) ·min

{
1, 2

−
t−tdecay
Tdecay

}
, (A.5)

where η(0) is the initial learning rate, tdecay is the epoch at which the decay begins, and
Tdecay is the decay period.

A.4 Autocorrelation Analysis

When studying results from an MCMC-based model it is important to be aware that
sequentially generated samples are not always statistically independent, that is, there is
some thermalization threshold that corresponds to the minimum number of sampling steps
between samples to consider them as statistically independent.

For a time series x1, . . . , xn, the lag-k autocorrelation function is defined as [43]

ρk =
cov(xt, xt+k)

σ2
x

. (A.6)

The autocorrelation function is essentially the Pearson correlation coefficient, except in-
stead of comparing two different variables it compares the same variable at different times.
In this thesis we use the statsmodels Python package [44] to compute the autocorrelation
function as there are some caveats when computing it in practice with large chains, e.g.,
there are some tricks such as using a Fourier transformation to make the computations
more efficient.

The integrated autocorrelation time is a reasonable estimate of how many steps in be-
tween samples we should have before we can consider them to be (to a degree) statistically
independent. In this thesis we use the emcee Python package [45] to estimate the inte-
grated autocorrelation time, which follows the approach laid out by Goodman and Weare
in [46].

A.5 Kullback-Leibler Divergence

The Kullback-Leibler divergence [47] is a measure of how much the probability distribution
q differs from the reference probability distribution p. It is defined as

DKL(p ∥ q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (A.7)

where X is the probability space. It can be interpreted as the amount of information
loss associated with using q to approximate p. We also note that the KL divergence
is a distance, but not a metric (rather a divergence), because of the asymmetry that
DKL(p ∥ q) ̸= DKL(q ∥ p).

48

A.5.1 Kullback-Leibler Divergence in Practice

Due to the limited maximum sample size of 104 when using a D-Wave annealer and the
inability to concatenate sample sets due to spin-bath polarization effects [37], it makes
computation of the KL divergence quite difficult because we cannot get a proper read
on the probability distribution when the number of possible states is high. Even for the
small 12-qubit problem there are still 212 = 4096 possible states, thus 104 samples are not
entirely representative of the true distribution. This problem is only exacerbated when
working with larger system sizes.

Therefore, in this thesis we take a histogram-based approach to approximate the KL
divergence. All KL divergences are computed using 32 bins since this is close to the
number of bins computed using the Freedman-Diaconis rule on some of the sample sets for
the 12-qubit problem.

When computing the q distribution from a sample set of limited size, it is often the
case that some probabilities come out to zero, which in turn leads to issues computing
the KL divergence due to zeros in the denominator of the argument of the log. Luckily,
there is a way around this if we know the true probability of measuring such a state to be
nonzero. Due to the quantum nature of this problem and the fact that no state has a truly
zero probability (although some infinitesimally small), we can take such an approach.

The method we use to mitigate this problem is called smoothing [48], in which we
add some small probability ϵ to the q distribution probabilities that are observed to be
zero, then take the sum of the added probabilities and evenly subtract it from the nonzero
probabilities in order to ensure the distribution remains normalized. For example, if {q1 =
1/3, q2 = 2/3, q3 = 0, q4 = 0}, then the corresponding smoothed distribution is {q1 =
1/3− ϵ, q2 = 2/3− ϵ, q3 = ϵ, q4 = ϵ}.

Furthermore, we call it relative smoothing when the smoothed probabilities are taken
to be relative to the reference distribution p. This is useful when it is difficult to choose
a constant value of ϵ, e.g., when the reference distribution probabilities vary widely and
can coincide with ϵ. For example, if {q1 = 1/3, q2 = 2/3, q3 = 0, q4 = 0}, then the
corresponding relative smoothed distribution is {q1 = 1/3− ϵ(p3+p4)/2, q2 = 2/3− ϵ(p3+
p4)/2, q3 = ϵp3, q4 = ϵp4}.

We take a value of ϵ = 10−6 when computing DKL(pdata ∥ pmodel) because it is small
enough that it will not coincide with any of the pdata values since the data sets contain
only a few thousand samples, thus the smallest value of pdata is roughly on the order of
10−4. When computing DKL(ptheory ∥ psamples) though, we opt to use relative smoothing
with a value of ϵ = 10−6 since sometimes some probabilities of ptheory can be close to ϵ and
give a false sense of agreement with the smoothed psamples.

A.6 Tail Concentration Functions

The lower tail concentration function is defined as [49]

L(z) =
p(U1 ≤ z, U2 ≤ z)

z

=
C(z, z)

z
,

(A.8)

and the upper as

R(z) =
p(U1 > z,U2 > z)

1− z

=
1− 2z + C(z, z)

1− z
,

(A.9)

49

where U1 and U2 are uniform random variables on the interval [0, 1], and C(u1, u2) is the
copula of (U1, U2).

In practice, we compute U1 and U2 as the normalized rank of the observations of the
random variables X and Y , respectively. The way to interpret the concentration functions
is that they represent the probability that X and Y simultaneously take on extreme values.
When plotted, the lower tail concentration function is used for 0 ≤ z ≤ 0.5 and the upper
for 0.5 < z ≤ 1.

A nice explanation with animations can be found at [50].

A.7 Exact Computation of ρ

For the density matrix

ρ =
1

Z
e−βH , (A.10)

we can compute this as

ρ =
1

tr(A)
SAS−1, (A.11)

where

A = diag
(
e−β(λ1−mini{λi}), . . . , e−β(λ2n−mini{λi})

)
, (A.12)

where {λi} are the eigenvalues of H, and S is the matrix of eigenvectors that transforms
H to and from its eigenspace. We subtract mini{λi} from the eigenvalues in practice to
avoid computing the exponential of a large number which can lead to divergence in floating
point calculations.

A.8 Constants

The values of A(s) and B(s) are in terms of GHz, and consequently so is the Hamiltonian.
The density matrix is of the form ρ = e−βH(s), where β = 1/kT , so in order to obtain the
(effective) temperature we need the argument of the exponential to be dimensionless, i.e.,
k must be in terms of GHz ·K−1. This is achieved by taking a value of

k =
kB
h

≈ 1.380649 · 10−23 J ·K−1

6.62607015 · 10−34 J ·Hz−1

≈ 2.083661912 · 1010 Hz ·K−1

= 20.83661912 GHz ·K−1.

(A.13)

50

Appendix B

Restricted Boltzmann Machine

B.1 Conditional Probabilities

This derivation follows along the lines of that found on p. 658-659 of [11]. We start by
noting Eq. (3.2)

p(v,h) =
1

Z
e−E(v,h). (B.1)

From this we can derive the conditional probability using Eqs. (3.1) and (3.3)

p(h|v) = p(v,h)

p(v)

=
1

p(v)

1

Z
exp(a

⊺
v + b

⊺
h+ v

⊺
Wh)

=
1

Z ′ exp

(nh∑
j=1

bjhj +

nh∑
j=1

(v
⊺
W)jhj

)

=
1

Z ′

nh∏
j=1

exp
(
bjhj + (v

⊺
W)jhj

)
,

(B.2)

with

Z ′ =
∑
h

exp(b
⊺
h+ v

⊺
Wh), (B.3)

where
∑

h denotes the sum over all possible configurations of h. This leads us to

p(hj = 1|v) = p̃(hj = 1|v)
p̃(hj = 0|v) + p̃(hj = 1|v)

=
exp

(
bj + (v

⊺
W)j

)
1 + exp

(
bj + (v⊺W)j

)
= σ

(
bj + (v

⊺
W)j

)
.

(B.4)

Finally, we have

p(h|v) =
nh∏
j=1

σ
(
(2h− 1)⊙ (b+W

⊺
v)

)
j
. (B.5)

Analogously for p(v|h) one finds

p(v|h) =
nv∏
i=1

σ
(
(2v − 1)⊙ (a+Wh)

)
i
. (B.6)

51

B.2 Log-Likelihood Derivative

For the data set distribution pdata and parameters θ = (W,a,b) the log-likelihood is given
by

ℓ(θ) =
∑
v

pdata(v) log p(v)

=
∑
v

pdata(v) log
∑
h

p(v,h)

=
∑
v

pdata(v) log

(
1

Z

∑
h

e−E(v,h)

)
=

∑
v

pdata(v) log
∑
h

e−E(v,h) − log
∑
v,h

e−E(v,h).

(B.7)

Taking the partial derivative we find

∂θℓ(θ) =
∑
v

pdata(v)

∑
h e

−E(v,h)∂θ
(
− E(v,h)

)∑
h e

−E(v,h)
−

∑
v,h e

−E(v,h)∂θ
(
− E(v,h)

)∑
v,h e

−E(v,h)

=
∑
v

pdata(v)
〈
∂θ
(
− E(v,h)

)〉
p(h|v)

−
〈
∂θ
(
− E(v,h)

)〉
p(v,h)

.

(B.8)

This gives us

∂wijℓ(θ) = ⟨vihj⟩data − ⟨vihj⟩model,

∂aiℓ(θ) = ⟨vi⟩data − ⟨vi⟩model,

∂bjℓ(θ) = ⟨hj⟩data − ⟨hj⟩model,

(B.9)

where ⟨ · ⟩data denotes the expectation value with respect to the data set distribution, and
⟨ · ⟩model denotes the expectation value with respect to the model distribution.

52

Appendix C

Quantum Boltzmann Machine

C.1 Log-Likelihood Derivative

This derivation follows along the lines of that laid out in [15]. We start with the log-
likelihood

ℓ(θ) =
∑
v

pdata(v) log p(v)

=
∑
v

pdata(v) log
tr(Λve

−H)

tr(e−H)

=
∑
v

pdata(v)
[
log tr(Λve

−H)− log tr(e−H)
]
,

(C.1)

where
∑

v denotes the sum over all possible configurations of v. Taking the partial deriva-
tive yields

∂θℓ(θ) =
∑
v

pdata(v)

[
tr(Λv∂θe

−H)

tr(Λve−H)
− tr(∂θe−H)

tr(e−H)

]
. (C.2)

Due to the noncommutativity of H and ∂θH, we need to use the trick laid out in [15] where
we take e−H = (e−δτH)n with δτ ≡ 1/n, which allows one to write

∂θe
−H = −

n∑
m=1

e−mδτHδτ∂θHe−(n−m)δτH +O(δτ2). (C.3)

Taking the limit as n→∞ of both sides gives

∂θe
−H = lim

n→∞
−

n∑
m=1

e−mδτHδτ∂θHe−(n−m)δτH +O(δτ2)

= −
∫ 1

0
dτe−τH∂θHe(τ−1)H .

(C.4)

53

From here one can take the trace of both sides to arrive at

tr(∂θe−H) = −tr
(∫ 1

0
dτe−τH∂θHe(τ−1)H

)
= −

∫ 1

0
dτtr

(
e−τH∂θHe(τ−1)H

)
= −

∫ 1

0
dτtr

(
e(τ−1)He−τH∂θH

)
= −

∫ 1

0
dτtr

(
e−H∂θH

)
= −tr

(
e−H∂θH

)
,

(C.5)

which gives

tr(∂θe−H)

tr(e−H)
= −tr(e−H∂θH)

tr(e−H)

= −tr(ρ∂θH)

= −⟨∂θH⟩.

(C.6)

Unfortunately, due to the additional factor of Λv in the first term of Eq. (C.2), one arrives
at

tr(Λv∂θe
−H) = −tr

(∫ 1

0
dτΛve

−τH∂θHe(τ−1)H

)
= −

∫ 1

0
dτtr

(
Λve

−τH∂θHe(τ−1)H
)
,

(C.7)

which is nontrivial to compute in practice.

C.2 Log-Likelihood Lower Bound

This derivation follows along the lines of that laid out in [15]. The Golden-Thompson
inequality that tr(eAeB) ≥ tr(eA+B) allows one to write (for small ϵ > 0)

tr(e−Helog(Λv+ϵ)) ≥ tr(e−H+log(Λv+ϵ)). (C.8)

Taking the limit ϵ→ 0 yields

tr(Λve
−H) ≥ tr(e−Hv), (C.9)

where

Hv = ⟨v|H|v⟩ (C.10)

is the clamped Hamiltonian. This is called clamped because the visible qubits are held to
the classical state of the visible vector v due to an infinite energy penalty imposed by the
log(Λv + ϵ) term. Using this we can write the inequality

p(v) =
tr(Λve

−H)

tr(e−H)

≥ tr(e−Hv)

tr(e−H)
,

(C.11)

54

which in turn allows for the log-likelihood to be bounded as

ℓ(θ) ≥ ℓ̃(θ), (C.12)

where

ℓ̃(θ) =
∑
v

pdata(v) log
tr(e−Hv)

tr(e−H)
. (C.13)

C.3 Log-Likelihood Lower Bound Derivative

This derivation follows along the lines of that laid out in [15]. Taking the partial derivative
of the log-likelihood lower bound yields

∂θ ℓ̃(θ) =
∑
v

pdata(v)

[
tr(∂θe−Hv)

tr(e−Hv)
− tr(∂θe−H)

tr(e−H)

]
=

∑
v

pdata(v)

[
tr(−e−Hv∂θHv)

tr(e−Hv)
− tr(−e−H∂θH)

tr(e−H)

]
=

∑
v

pdata(v)[tr(−ρv∂θHv)− tr(−ρ∂θH)]

=
∑
v

pdata(v)[⟨−∂θHv⟩v − ⟨−∂θH⟩]

= ⟨−∂θHv⟩v − ⟨−∂θH⟩.

(C.14)

Plugging in our parameters we get

∂wij ℓ̃(θ) = ⟨σz
i σ

z
j ⟩v − ⟨σ

z
i σ

z
j ⟩

= ⟨σz
i σ

z
j ⟩data − ⟨σz

i σ
z
j ⟩model,

∂bi ℓ̃(θ) = ⟨σz
i ⟩v − ⟨σ

z
i ⟩

= ⟨σz
i ⟩data − ⟨σz

i ⟩model,

(C.15)

where ⟨ · ⟩data denotes the expectation value with respect to the data set distribution, and
⟨ · ⟩model denotes the expectation value with respect to the model distribution.

When restrictions are imposed on connections within the hidden layer, the clamped
Hamiltonian reduces to

Hv = −
n∑

i=1

(
Γiσ

x
i + b′i(v)σ

z
i

)
, (C.16)

where b′i(v) = bi + (W
⊺
v)i. This allows one to rewrite the clamped density matrix as

ρv =
1

Zv
exp

(n∑
i=1

(
Γiσ

x
i + h′i(v)σ

z
i

))

=
1

Zv

n∏
i=1

exp
(
Γiσ

x
i + b′i(v)σ

z
i

)
=

n∏
i=1

ρ
(i)
v .

(C.17)

55

With this we can compute the expectation values as

⟨σz
i ⟩v = tr(ρ(i)v σz

i)

=

tr
[
exp

(
Γiσ

x
i + b′i(v)σ

z
i

)
σz
i

]
tr
[
exp

(
Γiσx

i + b′i(v)σ
z
i

)]
=

b′i(v)

Di(v)
tanh

(
Di(v)

)
,

(C.18)

where Di(v) =
√
Γ2
i + b′i(v)

2.
The last equality above is obtained by using that for traceless A with detA < 0 we can

write

exp(A) = cosh
(√
|detA|

)
I +

1√
|detA|

sinh
(√
|detA|

)
A. (C.19)

This is obtained by using Cayley-Hamilton theorem along with the series expansion of the
matrix exponential and grouping the terms.

C.4 Effective β as a Learnable Parameter

This derivation follows along the lines of that laid out in [22]. Suppose the D-Wave annealer
samples according to a classical Boltzmann distribution pDW of energies EDW = E/β, i.e.,

pDW =
1

ZDW
e−EDW

=
1

ZDW
e−E/β.

(C.20)

Then we can take the partial derivative of the corresponding log-likelihood

∂β log pDW =
1

β2
(E − ⟨E⟩), (C.21)

and after averaging over all configurations and multiplying by the learning rate η we get

∆β =
η

β2

(
⟨E⟩data − ⟨E⟩model

)
, (C.22)

which we can use to treat the effective inverse temperature as a learnable parameter.

56

Bibliography

[1] D-Wave Systems Inc. Leap™ Quantum Cloud Service. url: https://cloud.
dwavesys.com/leap/.

[2] Lisa Zyga. D-wave sells first commercial quantum computer. June 2011. url: https:
//phys.org/news/2011-06-d-wave-commercial-quantum.html.

[3] D-Wave Systems Inc. The D-Wave Advantage System: An Overview. url: https:
//www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_
advantage_system_an_overview.pdf.

[4] BIS. Foreign Exchange turnover in April 2019. Sept. 2019. url: https://www.
bis.org/statistics/rpfx19_fx.htm.

[5] Alexei Kondratyev and Christian Schwarz. “The Market Generator”. In: Risk (May
2019). url: http://dx.doi.org/10.2139/ssrn.3384948.

[6] Cameron Perot. qbm. 2022. url: https://jugit.fz-juelich.de/qip/qbm.

[7] Dukascopy. Historical data feed :: Dukascopy Bank Sa: Swiss Forex Bank: ECN
broker: Managed accounts: Swiss FX Trading Platform. url: https : / / www .
dukascopy.com/swiss/english/marketwatch/historical/.

[8] Why log returns. Nov. 2012. url: https://quantivity.wordpress.com/
2011/02/21/why-log-returns/.

[9] EU referendum. url: https://www.gov.uk/government/topical-events/
eu-referendum.

[10] Martin Fackler. In Japan, a robust yen undermines the markets. Oct. 2008. url:
https://www.nytimes.com/2008/10/28/business/worldbusiness/
28yen.html.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[12] Philip M. Long and Rocco A. Servedio. “Restricted Boltzmann Machines Are Hard to
Approximately Evaluate or Simulate”. In: Proceedings of the 27th International Con-
ference on International Conference on Machine Learning. ICML’10. Haifa, Israel:
Omnipress, 2010, pp. 703–710. isbn: 9781605589077.

[13] Geoffrey Hinton. A Practical Guide to Training Restricted Boltzmann Machines (Ver-
sion 1). Aug. 2010. doi: 10.1007/978-3-642-35289-8_32.

[14] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825–2830.

[15] Mohammad H. Amin et al. “Quantum Boltzmann Machine”. In: Phys. Rev. X 8
(2 May 2018), p. 021050. doi: 10.1103/PhysRevX.8.021050. url: https:
//link.aps.org/doi/10.1103/PhysRevX.8.021050.

[16] M. Born and V. Fock. “Beweis des Adiabatensatzes”. In: Zeitschrift für Physik 51.3-4
(1928), pp. 165–180. doi: 10.1007/bf01343193.

57

https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/leap/
https://phys.org/news/2011-06-d-wave-commercial-quantum.html
https://phys.org/news/2011-06-d-wave-commercial-quantum.html
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
https://www.bis.org/statistics/rpfx19_fx.htm
https://www.bis.org/statistics/rpfx19_fx.htm
http://dx.doi.org/10.2139/ssrn.3384948
https://jugit.fz-juelich.de/qip/qbm
https://www.dukascopy.com/swiss/english/marketwatch/historical/
https://www.dukascopy.com/swiss/english/marketwatch/historical/
https://quantivity.wordpress.com/2011/02/21/why-log-returns/
https://quantivity.wordpress.com/2011/02/21/why-log-returns/
https://www.gov.uk/government/topical-events/eu-referendum
https://www.gov.uk/government/topical-events/eu-referendum
https://www.nytimes.com/2008/10/28/business/worldbusiness/28yen.html
https://www.nytimes.com/2008/10/28/business/worldbusiness/28yen.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1103/PhysRevX.8.021050
https://link.aps.org/doi/10.1103/PhysRevX.8.021050
https://link.aps.org/doi/10.1103/PhysRevX.8.021050
https://doi.org/10.1007/bf01343193

[17] Madita Willsch, Dennis Willsch, and Kristel Michielsen. Lecture Notes: Programming
Quantum Computers. 2022. arXiv: 2201.02051 [quant-ph].

[18] D-Wave Systems Inc. Annealing Implementation and Controls. url: https://
docs.dwavesys.com/docs/latest/c_qpu_annealing.html.

[19] D-Wave Systems Inc. QPU Architecture: Topologies. url: https://docs.dwavesys.
com/docs/latest/c_gs_4.html.

[20] D-Wave Systems Inc. QPU-Specific Characteristics. url: https://docs.dwavesys.
com/docs/latest/doc_physical_properties.html.

[21] Mohammad H. Amin. “Searching for quantum speedup in quasistatic quantum an-
nealers”. In: Phys. Rev. A 92 (5 Nov. 2015), p. 052323. doi: 10.1103/PhysRevA.
92.052323. url: https://link.aps.org/doi/10.1103/PhysRevA.92.
052323.

[22] Guanglei Xu and William Oates. “Adaptive hyperparameter updating for training
restricted Boltzmann machines on quantum annealers”. In: Scientific Reports 11 (Feb.
2021), p. 2727. doi: 10.1038/s41598-021-82197-1.

[23] D-Wave Systems Inc. Ocean Developer Tools. url: https://www.dwavesys.
com/solutions-and-products/ocean/.

[24] D-Wave Systems Inc. Solver Parameters. url: https://docs.dwavesys.com/
docs/latest/c_solver_parameters.html.

[25] D-Wave Systems Inc. Solver Properties. url: https://docs.dwavesys.com/
docs/latest/c_solver_properties.html.

[26] Steven H. Adachi and Maxwell P. Henderson. Application of Quantum Annealing to
Training of Deep Neural Networks. 2015. arXiv: 1510.06356 [quant-ph].

[27] Marcello Benedetti et al. Estimation of effective temperatures in quantum annealers
for sampling applications: A case study with possible applications in deep learning.
2016. arXiv: 1510.07611 [quant-ph].

[28] Eric R. Anschuetz and Cristian Zanoci. “Near-term quantum-classical associative
adversarial networks”. In: Physical Review A 100.5 (Nov. 2019). issn: 2469-9934.
doi: 10.1103/physreva.100.052327. url: http://dx.doi.org/10.
1103/PhysRevA.100.052327.

[29] Nathan Wiebe and Leonard Wossnig. Generative training of quantum Boltzmann
machines with hidden units. 2019. arXiv: 1905.09902 [quant-ph].

[30] Lorenzo Rocutto, Claudio Destri, and Enrico Prati. Quantum Semantic Learning
by Reverse Annealing an Adiabatic Quantum Computer. 2020. arXiv: 2003.11945
[quant-ph].

[31] Vivek Dixit et al. “Training Restricted Boltzmann Machines With a D-Wave Quan-
tum Annealer”. In: Frontiers in Physics 9 (2021), p. 374. issn: 2296-424X. doi:
10.3389/fphy.2021.589626. url: https://www.frontiersin.org/
article/10.3389/fphy.2021.589626.

[32] Salmenperä Ilmo. Training Quantum Restricted Boltzmann Machines Using Dropout
Method. 2021.

[33] Max Wilson et al. “Quantum-assisted associative adversarial network: applying quan-
tum annealing in deep learning”. In: Quantum Machine Intelligence 3.1 (June 2021).
issn: 2524-4914. doi: 10.1007/s42484-021-00047-9. url: http://dx.doi.
org/10.1007/s42484-021-00047-9.

[34] Jeffrey Marshall et al. “Power of Pausing: Advancing Understanding of Thermaliza-
tion in Experimental Quantum Annealers”. In: Physical Review Applied (2019).

58

https://arxiv.org/abs/2201.02051
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
https://link.aps.org/doi/10.1103/PhysRevA.92.052323
https://link.aps.org/doi/10.1103/PhysRevA.92.052323
https://doi.org/10.1038/s41598-021-82197-1
https://www.dwavesys.com/solutions-and-products/ocean/
https://www.dwavesys.com/solutions-and-products/ocean/
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://arxiv.org/abs/1510.06356
https://arxiv.org/abs/1510.07611
https://doi.org/10.1103/physreva.100.052327
http://dx.doi.org/10.1103/PhysRevA.100.052327
http://dx.doi.org/10.1103/PhysRevA.100.052327
https://arxiv.org/abs/1905.09902
https://arxiv.org/abs/2003.11945
https://arxiv.org/abs/2003.11945
https://doi.org/10.3389/fphy.2021.589626
https://www.frontiersin.org/article/10.3389/fphy.2021.589626
https://www.frontiersin.org/article/10.3389/fphy.2021.589626
https://doi.org/10.1007/s42484-021-00047-9
http://dx.doi.org/10.1007/s42484-021-00047-9
http://dx.doi.org/10.1007/s42484-021-00047-9

[35] Kevin P. Murphy. Machine learning: A probabilistic perspective. MIT Press, 2012.

[36] Brian Coyle et al. Quantum versus Classical Generative Modelling in Finance. 2020.
arXiv: 2008.00691 [quant-ph].

[37] Thomas Pochart, Paulin Jacquot, and Joseph Mikael. On the challenges of using D-
Wave computers to sample Boltzmann Random Variables. 2021. arXiv: 2111.15295
[quant-ph].

[38] Lev Barash et al. “Estimating the density of states of frustrated spin systems”. In:
New Journal of Physics 21.7 (July 2019), p. 073065. issn: 1367-2630. doi: 10.
1088/1367-2630/ab2e39. url: http://dx.doi.org/10.1088/1367-
2630/ab2e39.

[39] D-Wave Systems Inc. Error Sources for Problem Representation. url: https://
docs.dwavesys.com/docs/latest/c_qpu_ice.html.

[40] D-Wave Systems Inc. Other Error Sources. url: https://docs.dwavesys.com/
docs/latest/c_qpu_errors.html.

[41] Jerome L. Myers, A. Well, and Robert Frederick Lorch. Research Design and Statis-
tical Analysis. Routledge, 2010.

[42] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[43] Box George E P., Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series Analysis:
Forecasting and Control. Prentice Hall, 1994.

[44] Skipper Seabold and Josef Perktold. “statsmodels: Econometric and statistical mod-
eling with python”. In: 9th Python in Science Conference. 2010.

[45] D. Foreman-Mackey et al. “emcee: The MCMC Hammer”. In: PASP 125 (2013),
pp. 306–312. doi: 10.1086/670067. eprint: 1202.3665.

[46] Jonathan Goodman and Jonathan Weare. “Ensemble samplers with affine invari-
ance”. In: Communications in Applied Mathematics and Computational Science 5.1
(2010), pp. 65–80. doi: 10.2140/camcos.2010.5.65.

[47] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of
Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/aoms/1177729694.
url: https://doi.org/10.1214/aoms/1177729694.

[48] Jiawei Han. Kullback-Leibler Divergence. url: http://hanj.cs.illinois.
edu/cs412/bk3/KL-divergence.pdf.

[49] Gary Venter. “Tails of Copulas”. In: Proceedings of the Casualty Actuarial Society 89
(Jan. 2002).

[50] Arthur Charpentier. Copulas and tail dependence, part 1. Sept. 2012. url: https:
//freakonometrics.hypotheses.org/2435.

59

https://arxiv.org/abs/2008.00691
https://arxiv.org/abs/2111.15295
https://arxiv.org/abs/2111.15295
https://doi.org/10.1088/1367-2630/ab2e39
https://doi.org/10.1088/1367-2630/ab2e39
http://dx.doi.org/10.1088/1367-2630/ab2e39
http://dx.doi.org/10.1088/1367-2630/ab2e39
https://docs.dwavesys.com/docs/latest/c_qpu_ice.html
https://docs.dwavesys.com/docs/latest/c_qpu_ice.html
https://docs.dwavesys.com/docs/latest/c_qpu_errors.html
https://docs.dwavesys.com/docs/latest/c_qpu_errors.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1086/670067
1202.3665
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://hanj.cs.illinois.edu/cs412/bk3/KL-divergence.pdf
http://hanj.cs.illinois.edu/cs412/bk3/KL-divergence.pdf
https://freakonometrics.hypotheses.org/2435
https://freakonometrics.hypotheses.org/2435

	Introduction
	Data Analysis & Preprocessing
	Data Analysis
	Data Preprocessing
	Data Transformation
	Additional Information

	The Classical Restricted Boltzmann Machine
	Theory
	Optimizing an RBM

	The Classical Market Generator
	Models
	Results
	Summary

	The Quantum Boltzmann Machine
	Theory
	Optimizing a QBM
	Quantum Annealing

	12-Qubit Problem
	Sampling From a Quantum Boltzmann Distribution
	Training Data
	Simulation-based Model
	D-Wave Advantage 4.1-based Model

	The Quantum Market Generator
	Setting the Annealer's Hyperparameters
	Results
	Comparison to Gate-Based Models
	Summary

	Challenges of Using a D-Wave Annealer to Train QBMs
	Choosing an Embedding
	Sampling the Proper Distribution
	QPU Limitations and Imperfections

	Conclusion
	Summary
	Future Directions

	Appendix Definitions and Methodologies
	Correlation Coefficients
	Annualized Volatility
	Learning Rate Decay Schedule
	Autocorrelation Analysis
	Kullback-Leibler Divergence
	Kullback-Leibler Divergence in Practice

	Tail Concentration Functions
	Exact Computation of
	Constants

	Appendix Restricted Boltzmann Machine
	Conditional Probabilities
	Log-Likelihood Derivative

	Appendix Quantum Boltzmann Machine
	Log-Likelihood Derivative
	Log-Likelihood Lower Bound
	Log-Likelihood Lower Bound Derivative
	Effective as a Learnable Parameter

