000916633 001__ 916633
000916633 005__ 20230123101855.0
000916633 0247_ $$2doi$$a10.5281/ZENODO.5555960
000916633 037__ $$aFZJ-2022-06384
000916633 088__ $$2Other$$a0
000916633 1001_ $$0P:(DE-HGF)0$$aBartsch, Valeria$$b0$$eCorresponding author
000916633 245__ $$a< QC | HPC >: Quantum for HPC
000916633 260__ $$bETP4HPC$$c2021
000916633 300__ $$a16 p
000916633 3367_ $$2DRIVER$$areport
000916633 3367_ $$2ORCID$$aREPORT
000916633 3367_ $$010$$2EndNote$$aReport
000916633 3367_ $$2DataCite$$aOutput Types/Report
000916633 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$breport$$mreport$$s1672813854_28290
000916633 3367_ $$2BibTeX$$aTECHREPORT
000916633 520__ $$aQuantum Computing (QC) describes a new way of computing based on the principles of quantum mechanics. From a High Performance Computing (HPC) perspective, QC needs to be integrated: at a system level, where quantum computer technologies need to be integrated in HPC clusters; at a programming level, where the new disruptive ways of programming devices call for a full hardware-software stack to be built; at an application level, where QC is bound to lead to disruptive changes in the complexity of some applications so that compute-intensive or intractable problems in the HPC domain might become tractable in the future. The White Paper QC for HPC focuses on the technology integration of QC in HPC clusters, gives an overview of the full hardware-software stack and QC emulators, and highlights promising customised QC algorithms for near-term quantum computers and its impact on HPC applications. In addition to universal quantum computers, we will describe non-universal QC where appropriate. Recent research references will be used to cover the basic concepts. Thetarget audience of this paper is the European HPC community: members of HPC centres, HPC algorithm developers, scientists interested in the co-design for quantum hardware, benchmarking, etc.
000916633 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000916633 588__ $$aDataset connected to DataCite
000916633 7001_ $$00000-0002-8835-4123$$aColin de Verdière, Guillaume$$b1
000916633 7001_ $$0P:(DE-HGF)0$$aNominé, Jean-Philippe$$b2
000916633 7001_ $$0P:(DE-HGF)0$$aOttaviani, Daniele$$b3
000916633 7001_ $$00000-0002-1644-5675$$aDragoni, Daniele$$b4
000916633 7001_ $$0P:(DE-HGF)0$$aBouazza, Chayma$$b5
000916633 7001_ $$0P:(DE-HGF)0$$aMagugliani, Fabrizio$$b6
000916633 7001_ $$00000-0003-4623-3806$$aBowden, David$$b7
000916633 7001_ $$00000-0002-9699-4219$$aAllouche, Cyril$$b8
000916633 7001_ $$00000-0002-9793-8235$$aJohansson, Mikael$$b9
000916633 7001_ $$00000-0001-8482-2607$$aTerzo, Olivier$$b10
000916633 7001_ $$00000-0002-7372-6975$$aScarabosio, Andrea$$b11
000916633 7001_ $$00000-0002-3056-796X$$aVitali, Giacomo$$b12
000916633 7001_ $$00000-0003-4881-8365$$aShagieva, Farida$$b13
000916633 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b14
000916633 773__ $$a10.5281/ZENODO.5555960
000916633 909CO $$ooai:juser.fz-juelich.de:916633$$pVDB
000916633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b14$$kFZJ
000916633 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000916633 9141_ $$y2022
000916633 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000916633 980__ $$areport
000916633 980__ $$aVDB
000916633 980__ $$aI:(DE-Juel1)JSC-20090406
000916633 980__ $$aUNRESTRICTED