000916657 001__ 916657
000916657 005__ 20230123110801.0
000916657 0247_ $$2doi$$a10.3390/nano12193281
000916657 0247_ $$2Handle$$a2128/33371
000916657 0247_ $$2pmid$$a36234411
000916657 0247_ $$2WOS$$aWOS:000867959100001
000916657 037__ $$aFZJ-2023-00009
000916657 082__ $$a540
000916657 1001_ $$0P:(DE-Juel1)180889$$aSafari, Mohammad Reza$$b0$$eCorresponding author
000916657 245__ $$aDeposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates
000916657 260__ $$aBasel$$bMDPI$$c2022
000916657 3367_ $$2DRIVER$$aarticle
000916657 3367_ $$2DataCite$$aOutput Types/Journal article
000916657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672834518_11195
000916657 3367_ $$2BibTeX$$aARTICLE
000916657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916657 3367_ $$00$$2EndNote$$aJournal Article
000916657 520__ $$aThe discovery of chirality-induced spin selectivity (CISS), resulting from an interaction between the electron spin and handedness of chiral molecules, has sparked interest in surface-adsorbed chiral molecules due to potential applications in spintronics, enantioseparation, and enantioselective chemical or biological processes. We study the deposition of chiral heptahelicene by sublimation under ultra-high vacuum onto bare Cu(111), Co bilayer nanoislands on Cu(111), and Fe bilayers on W(110) by low-temperature spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS). In all cases, the molecules remain intact and adsorb with the proximal phenanthrene group aligned parallel to the surface. Three degenerate in-plane orientations on Cu(111) and Co(111), reflecting substrate symmetry, and only two on Fe(110), i.e., fewer than symmetry permits, indicate a specific adsorption site for each substrate. Heptahelicene physisorbs on Cu(111) but chemisorbs on Co(111) and Fe(110) bilayers, which nevertheless remain for the sub-monolayer coverage ferromagnetic and magnetized out-of-plane. We are able to determine the handedness of individual molecules chemisorbed on Fe(110) and Co(111), as previously reported for less reactive Cu(111). The demonstrated deposition control and STM/STS imaging capabilities for heptahelicene on Co/Cu(111) and Fe/W(110) substrate systems lay the foundation for studying CISS in ultra-high vacuum and on the microscopic level of single molecules in controlled atomic configurations.
000916657 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000916657 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916657 7001_ $$0P:(DE-Juel1)130822$$aMatthes, Frank$$b1
000916657 7001_ $$0P:(DE-Juel1)184807$$aErnst, Karl-Heinz$$b2
000916657 7001_ $$0P:(DE-Juel1)130582$$aBürgler, Daniel E.$$b3
000916657 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b4
000916657 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano12193281$$gVol. 12, no. 19, p. 3281 -$$n19$$p3281 -$$tNanomaterials$$v12$$x2079-4991$$y2022
000916657 8564_ $$uhttps://juser.fz-juelich.de/record/916657/files/nanomaterials-12-03281.pdf$$yOpenAccess
000916657 909CO $$ooai:juser.fz-juelich.de:916657$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180889$$aForschungszentrum Jülich$$b0$$kFZJ
000916657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130822$$aForschungszentrum Jülich$$b1$$kFZJ
000916657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130582$$aForschungszentrum Jülich$$b3$$kFZJ
000916657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b4$$kFZJ
000916657 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000916657 9141_ $$y2022
000916657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916657 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-26T21:24:06Z
000916657 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-26T21:24:06Z
000916657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-26T21:24:06Z
000916657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000916657 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOMATERIALS-BASEL : 2021$$d2022-11-12
000916657 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000916657 9801_ $$aFullTexts
000916657 980__ $$ajournal
000916657 980__ $$aVDB
000916657 980__ $$aUNRESTRICTED
000916657 980__ $$aI:(DE-Juel1)PGI-6-20110106