000916658 001__ 916658
000916658 005__ 20230126125752.0
000916658 0247_ $$2doi$$a10.3390/cryst12111635
000916658 0247_ $$2Handle$$a2128/33374
000916658 0247_ $$2WOS$$aWOS:000894870600001
000916658 037__ $$aFZJ-2023-00010
000916658 082__ $$a540
000916658 1001_ $$0P:(DE-HGF)0$$aChen, Genyu$$b0
000916658 245__ $$aTransient THz Emission and Effective Mass Determination in Highly Resistive GaAs Crystals Excited by Femtosecond Optical Pulses
000916658 260__ $$aBasel$$bMDPI$$c2022
000916658 3367_ $$2DRIVER$$aarticle
000916658 3367_ $$2DataCite$$aOutput Types/Journal article
000916658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674726741_22424
000916658 3367_ $$2BibTeX$$aARTICLE
000916658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916658 3367_ $$00$$2EndNote$$aJournal Article
000916658 520__ $$aWe present comprehensive studies on the emission of broadband, free-space THz transients from several highly resistive GaAs samples excited by femtosecond optical pulses. Our test samples are characterized by different degrees of disorder, ranging from nitrogen-implanted to semi-insulating and annealed semi-insulating GaAs crystals. In our samples, we clearly observed transient THz emissions due to the optical rectification effect, as well as due to the presence of the surface depletion electrical field. Next, we arranged our experimental setup in such way that we could observe directly how the amplitude of surface-emitted THz optical pulses is affected by an applied, in-plane magnetic field. We ascribe this effect to the Lorentz force that additionally accelerates optically excited carriers. The magnetic-field factor η is a linear function of the applied magnetic field and is the largest for an annealed GaAs sample, while it is the lowest for an N-implanted GaAs annealed at the lowest (300 °C) temperature. The latter is directly related to the longest and shortest trapping times, respectively, measured using a femtosecond optical pump-probe spectroscopy technique. The linear dependence of the factor η on the trapping time enabled us to establish that, for all samples, regardless of their crystalline structure, the electron effective mass was equal to 0.059 of the electron mass m0, i.e., it was only about 6% smaller than the generally accepted 0.063m0 value for GaAs with a perfect crystalline structure.
000916658 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000916658 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916658 7001_ $$00000-0002-4651-2437$$aChakraborty, Debamitra$$b1
000916658 7001_ $$0P:(DE-HGF)0$$aCheng, Jing$$b2
000916658 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b3
000916658 7001_ $$0P:(DE-HGF)0$$aKomissarov, Ivan$$b4
000916658 7001_ $$0P:(DE-Juel1)130495$$aAdam, Roman$$b5
000916658 7001_ $$0P:(DE-Juel1)130582$$aBürgler, Daniel E.$$b6
000916658 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b7
000916658 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b8
000916658 7001_ $$00000-0003-0868-0779$$aSobolewski, Roman$$b9$$eCorresponding author
000916658 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst12111635$$gVol. 12, no. 11, p. 1635 -$$n11$$p1635 -$$tCrystals$$v12$$x2073-4352$$y2022
000916658 8564_ $$uhttps://juser.fz-juelich.de/record/916658/files/crystals-12-01635.pdf$$yOpenAccess
000916658 909CO $$ooai:juser.fz-juelich.de:916658$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000916658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich$$b3$$kFZJ
000916658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130495$$aForschungszentrum Jülich$$b5$$kFZJ
000916658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130582$$aForschungszentrum Jülich$$b6$$kFZJ
000916658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b7$$kFZJ
000916658 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich$$b8$$kFZJ
000916658 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000916658 9141_ $$y2022
000916658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-26
000916658 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2021$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T10:53:02Z
000916658 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T10:53:02Z
000916658 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916658 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T10:53:02Z
000916658 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000916658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000916658 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000916658 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000916658 980__ $$ajournal
000916658 980__ $$aVDB
000916658 980__ $$aI:(DE-Juel1)PGI-6-20110106
000916658 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000916658 980__ $$aUNRESTRICTED
000916658 9801_ $$aFullTexts