000916661 001__ 916661
000916661 005__ 20231027114350.0
000916661 0247_ $$2doi$$a10.1080/21663831.2022.2155492
000916661 0247_ $$2Handle$$a2128/33443
000916661 0247_ $$2WOS$$aWOS:000899504400001
000916661 037__ $$aFZJ-2023-00013
000916661 041__ $$aEnglish
000916661 082__ $$a670
000916661 1001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b0$$eCorresponding author
000916661 245__ $$aDirect observation of dislocation motion in the complex alloy T-Al-Mn-Fe using in-situ transmission electron microscopy
000916661 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2023
000916661 3367_ $$2DRIVER$$aarticle
000916661 3367_ $$2DataCite$$aOutput Types/Journal article
000916661 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673348439_21290
000916661 3367_ $$2BibTeX$$aARTICLE
000916661 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916661 3367_ $$00$$2EndNote$$aJournal Article
000916661 520__ $$aMetadislocations are novel defects recently identified in complex metallic alloys. It was reasoned that their propagation necessarily requires the orchestrated motion of hundreds of atoms along various crystallographic directions per elementary step. Here, we report on the direct observation of the motion of metadislocations on the atomic scale in the complex metallic alloy phase T-Al-Mn-Fe, using in-situ high-resolution transmission electron microscopy. We observe their propagation by discrete jumps between low-energy configurations. Using a tiling model, we determine their characteristic features including the Burgers vector, and identify their motion to take place in a mixed glide/climb process.
000916661 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000916661 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916661 7001_ $$0P:(DE-Juel1)130637$$aFeuerbacher, Michael$$b1
000916661 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b2$$ufzj
000916661 773__ $$0PERI:(DE-600)2703730-7$$a10.1080/21663831.2022.2155492$$gVol. 11, no. 5, p. 367 - 373$$n5$$p367 - 373$$tMaterials Research Letters$$v11$$x2166-3831$$y2023
000916661 8564_ $$uhttps://juser.fz-juelich.de/record/916661/files/Direct%20observation%20of%20dislocation%20motion%20in%20the%20complex%20alloy%20T%20Al%20Mn%20Fe%20using%20in%20situ%20transmission%20electron%20microscopy.pdf$$yOpenAccess
000916661 8564_ $$uhttps://juser.fz-juelich.de/record/916661/files/Direct%20observation.pdf$$yOpenAccess
000916661 8767_ $$d2023-01-16$$eAPC$$jDeposit$$lDeposit: Taylor and Francis
000916661 909CO $$ooai:juser.fz-juelich.de:916661$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000916661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b0$$kFZJ
000916661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130637$$aForschungszentrum Jülich$$b1$$kFZJ
000916661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ
000916661 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000916661 9141_ $$y2023
000916661 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000916661 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000916661 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000916661 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000916661 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000916661 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916661 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000916661 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-11
000916661 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916661 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-11
000916661 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-24T12:41:54Z
000916661 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-24T12:41:54Z
000916661 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-24T12:41:54Z
000916661 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER RES LETT : 2022$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
000916661 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER RES LETT : 2022$$d2023-10-26
000916661 920__ $$lyes
000916661 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000916661 9801_ $$aFullTexts
000916661 980__ $$ajournal
000916661 980__ $$aVDB
000916661 980__ $$aUNRESTRICTED
000916661 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000916661 980__ $$aAPC