000916667 001__ 916667
000916667 005__ 20231027114350.0
000916667 0247_ $$2doi$$a10.1002/chem.202203493
000916667 0247_ $$2ISSN$$a0947-6539
000916667 0247_ $$2ISSN$$a1521-3765
000916667 0247_ $$2Handle$$a2128/34206
000916667 0247_ $$2pmid$$a36579699
000916667 0247_ $$2WOS$$aWOS:000936890600001
000916667 037__ $$aFZJ-2023-00019
000916667 082__ $$a540
000916667 1001_ $$0P:(DE-HGF)0$$aAbyzov, Anton$$b0
000916667 245__ $$aFast Motions Dominate Dynamics of Intrinsically Disordered Tau Protein at High Temperatures
000916667 260__ $$aWeinheim$$bWiley-VCH$$c2023
000916667 3367_ $$2DRIVER$$aarticle
000916667 3367_ $$2DataCite$$aOutput Types/Journal article
000916667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679990948_1902
000916667 3367_ $$2BibTeX$$aARTICLE
000916667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916667 3367_ $$00$$2EndNote$$aJournal Article
000916667 520__ $$aReorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.
000916667 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000916667 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916667 7001_ $$0P:(DE-HGF)0$$aMandelkow, Eckhard$$b1
000916667 7001_ $$0P:(DE-HGF)0$$aZweckstetter, Markus$$b2
000916667 7001_ $$0P:(DE-Juel1)194492$$aRezaie Ghaleh, Nasrollah$$b3$$eCorresponding author
000916667 773__ $$0PERI:(DE-600)1478547-X$$a10.1002/chem.202203493$$gp. chem.202203493$$n17$$pe202203493$$tChemistry - a European journal$$v29$$x0947-6539$$y2023
000916667 8564_ $$uhttps://juser.fz-juelich.de/record/916667/files/Chemistry%20A%20European%20J%20-%202022%20-%20Abyzov%20-%20Fast%20Motions%20Dominate%20Dynamics%20of%20Intrinsically%20Disordered%20Tau%20Protein%20at%20High.pdf$$yOpenAccess
000916667 909CO $$ooai:juser.fz-juelich.de:916667$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194492$$aForschungszentrum Jülich$$b3$$kFZJ
000916667 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000916667 9141_ $$y2023
000916667 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
000916667 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000916667 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-18$$wger
000916667 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
000916667 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2022-11-18
000916667 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916667 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-18
000916667 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000916667 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-EUR J : 2022$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000916667 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000916667 920__ $$lyes
000916667 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000916667 980__ $$ajournal
000916667 980__ $$aVDB
000916667 980__ $$aUNRESTRICTED
000916667 980__ $$aI:(DE-Juel1)IBI-7-20200312
000916667 9801_ $$aFullTexts