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We compute the leading order hadronic vacuum polarization contribution to the anomalous mag-

netic moment of the muon. The calculations are performed using four flavors of stout smeared

staggered quarks, with quark masses at their physical values. The continuum limit is taken using

six different lattice spacings ranging from 0.132 fm down to 0.064 fm. All strong isospin break-

ing and electromagnetic effects are accounted for to leading order. A controlled infinite volume

limit is taken thanks to dedicated simulations performed in box sizes up to 11 fm. Putting all

these ingredients together, we find [(6` − 2)/2]LO−HVP = 707.5[5.5] × 10−10, which has a total

uncertainty of 0.8%. Compared to determinations based on the 4+4− → hadrons cross section,

our result significantly reduces the tension between the standard model prediction for the muon

6 − 2 and its experimental value.
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1. Introduction

The muon is an ephemeral sibling of the electron. It is 207 times more massive, but has the

same electric charge and spin. Similarly to the electron, it behaves like a tiny magnet, characterized

by a magnetic moment. This quantity is proportional to the spin and charge of the muon, and

inversely proportional to twice its mass. Dirac’s relativistic quantum mechanics predicts that the

constant of proportionality, 6`, should be 2. However, in a relativistic quantum field theory such as

the standard model, this prediction receives small corrections due to quantum, vacuum fluctuations.

These corrections are called the anomalous magnetic moment and are quantified by (6` − 2)/2.

They were measured to an exquisite 0.54 ppm at the Brookhaven National Laboratory in the early

2000s [1], confirmed recently by Fermilab [2], and have been calculated with a comparable precision

(see [3] for a recent review).

At this level of precision, all of the interactions of the standard model contribute. The leading

contributions are electromagnetic and described by quantum electrodynamics (QED), but the one

that dominates the theory error is induced by the strong interaction and requires solving the highly

non-linear equations of quantum chromodynamics (QCD) at low energies. This contribution is

determined by the leading-order, hadronic vacuum polarization (LO-HVP), which describes how

the propagation of a virtual photon is modified by the presence of quark and gluon fluctuations in

the vacuum. Here we compute this LO-HVP contribution to (6` −2)/2, denoted by 0LO−HVP
` , using

ab initio simulations in QCD and QED. In the present work, we include both QED and QCD, as

well as four non-degenerate quark flavors (up, down, strange and charm), in a lattice formulation

taking into account all dynamical effects. We also consider the tiny contributions of the bottom and

top quarks.

We compute 0LO−HVP
` in the so-called time-momentum representation [4], which relies on the

following, zero three-momentum, two-point function in Euclidean time C:

� (C) =
1

342

∑

`=1,2,3

∫
33G〈�` (®G, C)�` (0)〉 , (1)

where �` is the quark electromagnetic current with �`/4 =
2
3
D̄W`D − 1

3
3̄W`3 − 1

3
B̄W`B +

2
3
2̄W`2.

D, 3, B and 2 are the up, down, strange and charm quark fields and the angle brackets stand for

the QCD+QED expectation value to order 42. It is convenient to decompose � (C) into light,

strange, charm and disconnected components, which have very different statistical and systematic

uncertainties. Integrating the one-photon-irreducible (1WI) part of the two-point function (1) yields

the LO-HVP contribution to the magnetic moment of the muon [4–7]:

0LO−HVP
` = U2

∫ ∞

0

3C  (C) �1WI(C) , (2)

with the weight function,

 (C) =

∫ ∞

0

3&2

<2
`

l

(
&2

<2
`

) [
C2 −

4

&2
sin2

(
&C

2

)]
, (3)

and where l(A) = [A + 2 −
√
A (A + 4)]2/

√
A (A + 4), U is the fine structure constant in the Thomson

limit and <` is the muon mass. Since we consider only the LO-HVP contribution, for brevity we
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drop the superscript and multiply the result by 1010, i.e. 0` stands for 0LO−HVP
` × 1010 throughout

this work.

The subpercent precision, that we are aiming for, represents a huge challenge for lattice

QCD. To reach that goal, we have to address the following critical issues: scale determination;

noise reduction; QED and strong-isospin breaking; infinite-volume and continuum extrapolations.

We briefly discuss these one by one. For a more detailed exposition we refer the reader to the

Supplementary Information in [8].

2. Scale determination

The quantity 0` depends on the muon mass. When computing (2) on the lattice, <` has to

be converted into lattice units, 0<`, where 0 is the lattice spacing. A relative error of the lattice

spacing propagates into about a twice as large a relative error on 0`, so that 0 has to be determined

with a few permil precision. We use the mass of the Ω
− baryon, "Ω− = 1672.45(29) MeV [9], to

set the lattice spacing. Here we describe how we determine its QCD contribution; QED corrections

are described below.

To extract the mass of the positive-parity, ground-stateΩ baryon, a number of different operators

are available in the staggered formalism. First, there are two operators from the pioneering work of

Golterman and Smit [10]. To label these operators we use the convention of [11]:

ΩVI(C) =
∑

G:even

n012 [(1j0(12j1(13j2 − (2j0(21j1(23j2 + (3j0(31j1(32j2] (G), (4)

ΩXI(C) =
∑

G:even

n012 [(1j0(2j1(3j2] (G). (5)

Here, j0 (G) is the strange-quark field with color index 0. The operator (` performs a symmetric,

gauge-covariant shift in direction `, while (`a ≡ (`(a . Both ΩVI and ΩXI couple to two different

tastes of the Ω baryon, which become degenerate in the continuum limit. At finite lattice spacing

however, there is a splitting between the two tastes. In principle they could be disentangled by

carrying out an analysis involving the correlators of both ΩVI and ΩXI and also their cross terms.

Later, Bailey successfully constructed an operator which only couples to a single taste [12]. To

achieve this, two additional (valence) strange quarks are introduced: the strange-quark field gets an

additional “flavor” index: j0U with U = 1, 2, 3. The operator is then given as

ΩBa(C) =
[
2XU1XV2XW3 − XU3XV1XW2 − XU2XV3XW1 + (. . . V ↔ W . . . )

]
·

·
∑

G:even

n012
[
(1j0U(12j1V(13j2W − (2j0U(21j1V(23j2W + (3j0U(31j1V(32j2W

]
(G). (6)

The mass of this state becomes degenerate with the above two taste partners in the continuum limit.

We investigated the difference between these three operators on an ensemble with large statistics.

At V = 3.7000, corresponding to our coarsest lattice spacing, we computed the corresponding

Ω propagators on about 3000 configurations in addition to those used for the current propagator

measurements. The effective masses for the above three operators are shown in Figure 1. In the

asymptotic regime we see deviations below 0.1%, which gives an estimate of the taste violation. We

expect that these will get smaller as we go to finer lattice spacings. In this work we chose the ΩVI

3
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Figure 1: Effective mass of the ground state of the Ω baryon in lattice units on our coarsest ensemble with

V = 3.7000. Results with three different staggered operators, ΩVI, ΩXI and ΩBa are shown. The horizontal

lines and the shaded regions represent the fit values and the errors obtained with a four-state fit, Equation (7).

The dashed lines are the effective masses computed from the fitted functions.

operator for our scale setting measurements. This is justified, since typical statistical and systematic

errors on our ensembles are around 0.1%, and thus cover the taste-violation effects estimated here.

On the Ω propagators we perform a four-state fit using the fit function ℎ, with two positive and

two negative parity states:

ℎ(C, �, ") = �0ℎ+("0, C) + �1ℎ−("1, C) + �2ℎ+("2, C) + �3ℎ−("3, C) (7)

with ℎ+(", C) = 4−"C + (−1)C−14−" () −C) and ℎ−(", C) = −ℎ+(",) − C) describing the time

dependence of the positive and negative parity states. Here "0 and �0 are the mass and amplitude

of the ground state. In order to stabilize the fit, a prior term was introduced, containing priors on the

masses except for the ground state. The prior for the negative parity ground state, "1 = 2012 MeV,

is motivated by the recent observation from the Belle collaboration [13]. The excited states,

"2 = 2250 MeV and "3 = 2400 MeV, have not been discovered in experiments so far, so their

priors follow from the quark model [14]. The existence of these undiscovered states is also motivated

by lattice thermodynamics below the chiral transition [15, 16].

In addition to the above four-state fit to the Ω propagator we also used a mass extraction

procedure proposed in [17], which is based on the Generalized Eigenvalue Problem (GEVP). The

method has the advantage of not using priors.

For each time slice C we construct a 4×4 matrix H8, 9 (C) = �C+(8−1)+( 9−1) (8, 9 = 1, . . . , 4), from

the hadron propagator �C . Then for a given C0 and C1 let _(C0, C1) be an eigenvalue and E(C0, C1) an

eigenvector solution to this 4 × 4 generalized eigenvalue problem:

H(C0)E(C0, C1) = _(C0, C1)H (C1)E(C0, C1). (8)

Here we select the smallest eigenvalue _ and use the corresponding eigenvector E to project out the

ground state:

E+(C0, C1)H (C)E(C0, C1), (9)

4
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which then can be fitted to a simple exp(−"C) type function.

The mass extracted using the GEVP gives a third "Ω value for each ensemble, beside the

results with the four-state fit procedure with two fit ranges. We will use the deviation between

these three values as a systematic error in the Ω mass determination. More details on the scale

determination can be found in Ref. [18] and in the Supplementary Information of [8].

3. Isospin-breaking effects

Our staggered path integral includes four flavors of quarks, 5 = {D, 3, B, 2}, gluon fields* and

photon fields � and is given by:

/ =

∫
[3*] exp(−(6 [*])

∫
[3�] exp(−(W [�])

∏

5

det"1/4 [+* exp(84@ 5 �), < 5 ] . (10)

The photon integral measure [3�] and action (W are defined in the QEDL scheme [19]. The one-hop

staggered matrix in a background field,` can be written as

" [,,<] = � [,] + < =

∑

`

�` [,`] + <, (11)

where �` is the covariant differentiation in the ` direction involving, and its adjoint,† together

with the obligatory staggered phases. In the path integral the fermions are coupled to a gauge

field that is a product of the exponentiated photon field and of the smeared gluon gauge field +* .

@ 5 ∈ {+ 2
3
,− 1

3
,− 1

3
, + 2

3
} stand for the quark electric charges in units of the positron charge 4, < 5 for

the quark masses and U = 42/(4c). We use the notation X< ≡ <3 −<D for the difference in the up

and down quark masses and <; ≡
1
2
(<D +<3) for their average. To simplify later formulas we also

introduce the notations

" 5 ≡ " [+* 4
84@ 5 �, < 5 ] and dets[*, �; {< 5 }, {@ 5 }, 4] ≡

∏

5

det"
1/4
5
, (12)

where the latter is the product of all fermion determinants.

In this work isospin-breaking is implemented by taking derivatives with respect to the isospin-

breaking parameters and by measuring the so obtained derivative operators on isospin-symmetric

configurations [20]. We introduce a set of notations for isospin-symmetric observables and their

isospin-breaking derivatives. Consider the observable - (4, X<), which is a function of 4 and X<.

Then we define

-0 ≡ - (0, 0), - ′
< ≡ <;

m-

mX<
(0, 0), - ′

1 ≡
m-

m4
(0, 0), - ′′

2 ≡
1

2

m2-

m42
(0, 0). (13)

We take into account only leading-order isospin-breaking in this work, so no higher derivatives are

needed.

In the case of the fermion determinant, the isospin-symmetric value is denoted by dets0. Since

dets is symmetric under the exchange D ↔ 3, the strong-isospin-breaking of dets is zero at leading

5
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order: dets′< = 0. The electromagnetic derivatives are

dets′1

dets0

=

∑

5

@ 5

4
Tr

(
"−1

5 � [8�+* ]
)
, (14)

dets′′2

dets0

=
1

2



(
dets′1

dets0

)2

−
∑

5

@2
5

4
Tr

(
"−1

5 � [�2+* ]
)
−

∑

5

@2
5

4
Tr

(
"−1

5 � [8�+* ]"−1
5 � [8�+* ]

)
,

where Tr is trace over color and spacetime indices and the argument of the � operator is a 3 × 3

complex matrix valued field, e.g. �2+* has components �2
`,G [+* ]`,G . The implementation of these

derivatives is detailed in Refs. [8, 21].

We also make a distinction between the electric charge in the fermion determinant and in the

operator that we measure. We call the former sea electric charge and denote it by 4B, the latter is the

valence electric charge and is denoted by 4E . For an observable - that depends on both the valence

and sea charges, - (4E , 4B), the second order electric charge derivatives are defined as follows:

- ′′
20 ≡

1

2

m2-

m42
E

(0, 0), - ′′
11 ≡

m2-

m4Em4B
(0, 0), - ′′

02 ≡
1

2

m2-

m42
B

(0, 0). (15)

For functions that depend on either 4E or 4B, but not on both, we use the single digit notations of

Equation (13).

The expectation value of an operator $ is calculated by inserting $ [*, �] into the inte-

grand of the path integral of Equation (10) and normalizing the integral by / . Here we consider

operators whose photon field dependence arises entirely from the photon-quark interaction, i.e.

$ = $ [*, 4E�]. The expectation value of this operator depends on X<, 4E and 4B, and the

expansion in isospin breaking corrections can be written as:

〈$〉 = [〈$〉]0 + 4
2
E 〈$〉

′′
20 + 4E4B 〈$〉

′′
11 + 4

2
B 〈$〉

′′
02 +

X<
<;

〈$〉′<. (16)

Here, the individual terms can be expressed as expectation values obtained with the isospin-

symmetric path integral, which we denote by 〈. . . 〉0. The concrete expressions are:

isospin-symmetric: [〈$〉]0 = 〈$0〉0

qed valence-valence: 〈$〉′′20 = 〈$ ′′
2 〉0

qed sea-valence: 〈$〉′′11 =

〈
$ ′

1

dets′1

dets0

〉

0

qed sea-sea: 〈$〉′′02 =

〈
$0

dets′′2

dets0

〉

0

− 〈$0〉0

〈
dets′′2

dets0

〉

0

strong-isospin-breaking: 〈$〉′< = 〈$ ′
<〉0

(17)

In the derivation of these expressions we use
〈

dets′1
dets0

〉

0
= 0.

Note that Equation (16) is an expansion in bare parameters and not what we consider a

decomposition into isospin-symmetric and isospin breaking parts. The latter involves derivatives

with respect to renormalized observables and our prescription for that is given in Section 3.1. There

is no need to introduce a renormalized electromagnetic coupling though: its running is an $ (44)

effect, i.e. beyond the leading order isospin approximation that we consider here.

6
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3.1 Isospin-breaking decomposition

For various purposes it is useful to decompose the observables into isospin-symmetric and

isospin-breaking parts. This requires a matching of the isospin symmetric and full theories, in

which we specify a set of observables that must be equal in both theories. Of course, different sets

will lead to different decompositions, which is commonly referred to as scheme dependence. Only

the sum of the components, i.e. the result in the full theory, is scheme independent.

A possible choice for the observables are the Wilson-flow–based F0 scale and the masses of

mesons built from an up/down/strange and an anti-up/down/strange quark, "DD/"33/"BB. These

mesons are defined by taking into account only the quark-connected contributions in their two-point

functions [22]. Their masses are practical substitutes for the quark masses. Also, they are neutral

and have no magnetic moment, so they are a reasonable choice for an isospin decomposition.

These masses cannot be measured in experiments, but have a well defined continuum limit and

thus a physical value can be associated to them. In particular, we use the combinations "2
cj

≡
1
2
("2

DD + "2
33
) and Δ"2 ≡ "2

33
− "2

DD. For the determination of the physical values of F0, "BB

and Δ"2, see the Supplementary Information of [8].

For the decomposition we start with the QCD+QED theory and parameterize our observable

〈$〉 with the quantities defined above:

〈$〉("cj
F0, "BBF0,

!
F0
,Δ"F0, 4) . (18)

Here, the continuum limit is assumed. We can isolate the electromagnetic part by switching off the

electromagnetic coupling, while keeping the other parameters fixed. The strong-isospin-breaking

part is given by the response to the Δ" parameter, and the isospin-symmetric part is just the

remainder:

〈$〉qed ≡ 42 ·
m〈$〉

m42

����
"cjF0 ,"BBF0 ,

!
F0

,Δ"F0 ,4=0

(19)

〈$〉sib ≡ (Δ"F0)
2 ·

m〈$〉

m (Δ"F0)2

����
"cjF0 ,"BBF0 ,

!
F0

,Δ"F0=0,4=0

(20)

〈$〉iso ≡ 〈$〉("cj
F0, "BBF0,

!
F0
, 0, 0). (21)

One can also define the decomposition at a finite lattice spacing, for which F0 in lattice units can

be additionally fixed. In doing so the isospin symmetric part 〈$〉iso has to be distinguished from

the value of the observable at the bare isospin-symmetric point [〈$〉]0.

4. Noise reduction techniques

In this section we consider quantities at the isospin-symmetric point; noise reduction techniques

for the isospin-breaking part are discussed in Refs. [8, 21]. For the strange and charm connected

contributions, �
strange

0
and �charm

0
, and for the disconnected contribution �disc

0
we use the same

measurements that are presented in our previous work [23]. A new measurement procedure is

implemented for the light connected component�
light

0
. It is used to reanalyze the old configurations

and make measurements on new ensembles. This plays a key role in reducing the final statistical

error in 0`.

7
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4.1 Low Mode Averaging

The technique utilizes the lowest eigenmodes of the fermion matrix; for an early work with

low eigenmodes, see [24]. The way in which we use these modes here is essentially the same as

in [25], where it is called Low Mode Substitution. In the space orthogonal to these modes, the

computational effort is reduced considerably by applying imprecise (aka. sloppy) matrix inversions.

This is called the Truncated Solver Method [26] or All Mode Averaging [27]. Here we describe

the technique for the connected part of the current propagator. The same technique was applied

recently for magnetic moment computations in [28] also.

We consider the connected current propagator for timelike separation, and perform an averaging

over the source positions, together with a zero spatial-momentum projection at the sink:

� (C, C̄) ≡
1

3!3

∑

®̄G, ®G,`=1,2,3

�conn
`,G,`, Ḡ (<;, 0) = −

1

12!3

∑

`=1,2,3

ReTr
[
D`,C"

−1D`,C̄"
−1

]
, (22)

where D`,C =
∑

®G �` [8%G*] is an operator that performs a symmetric, gauge-covariant shift on a

vector EG:

[D`,CE]G = 8[`,G

(
*`,GEG+` +*†

`,G−`EG−`

)
· XG4,C , (23)

where [`,G are the staggered phases. We use the simplifying notation D = D`,C and D = D`,C̄ in

the following. In Equation (22), we apply the real part to reduce noise, because the imaginary part

vanishes anyway after averaging over gauge configurations.

Using the lowest eigenmodes of " we split the quark propagator into an eigenvector part and

into its orthogonal complement, denoted by “e” and ”r”, respectively:

"−1
= "−1

4 + "−1
A , "−1

4 =

∑

8

1

_8
E8E

†
8

and "−1
A = "−1

(

1 −
∑

8

E8E
†
8

)

, (24)

where E8/_8 is the 8-th eigenvector/eigenvalue of the operator " . Correspondingly, � splits into

eigen-eigen, rest-eigen and rest-rest contributions:

� = �44 + �A4 + �AA = −
1

4!3

∑

?=4,A
@=4,A

ReTr
[
D"−1

? D"−1
@

]
, (25)

where an average over ` is assumed but not shown explicitely. The benefit of this decomposition is

that the trace in the eigen-eigen part can be calculated exactly, and is thus equivalent to calculating

the propagator with all possible sources in position space. This is the main ingredient for the noise

reduction. Though no extra inversions are needed in this part, it has to be optimized carefully, since

there is a double sum over the eigenmodes, where each term is a scalar product E
†
8
DE 9 . In the rest-

eigen part we have terms E
†
8
D"−1

A DE8 and also terms where D and D are exchanged. Therefore,

this part is only a single sum over the eigenmodes, and each term involves one matrix inversion.

Note that these inversions are preconditioned by the eigenvectors, so they need many fewer iterations

than standard inversions. Additionally, we speed up the inversions by running them with a reduced

precision, and for some randomly selected eigenvectors we correct for the small bias by adding

the difference between a high precision solver and the reduced precision one [26, 27]. Finally, the

rest-rest part is evaluated using random source vectors b: we calculate b†D"−1
A D"−1

A b, which

requires two inversions per random source. The reduced precision inverter technique is used here

too. The improvement achieved by using these noise reduction techniques is shown in Figure 2.

8
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Figure 2: Comparison of a conventional random source based technique, as we applied it in our earlier work

[23], and the low-mode improvement technique of this work on a V = 3.9200 4stout ensemble for the case

of [0
light
` ]0’s upper and lower bounds (see Section 4.2).

4.2 Upper and lower bounds on 〈��〉

In the case of the light and disconnected contributions to the current propagator, the signal

deteriorates quickly as distance is increased. To calculate the HVP, a sum over time of the propagator

has to be performed. As was suggested in [29, 30], we introduce a cut in time C2 , beyond which

the propagator is replaced by upper and lower bounds, thereby reducing the statistical noise. Our

estimate is given by the average of the bounds at a C2 where the two bounds meet. The bounds are

derived from the fact that the current propagator is a sum of exponentials with positive coefficients.

For the light connected propagator at the isospin-symmetric point the bounds express the

positivity (lower bound) and that the propagator should decay faster than the exponential of two

pions (upper bound). They are given as

0 ≤ � light(C) ≤ � light(C2)
i(C)

i(C2)
, (26)

where i(C) = exp(−�2c C). For �2c we use the energy of two non-interacting pions with the smallest

non-zero lattice momentum 2c/!. The larger the C2 the better the upper bound, but it comes with

more statistical noise.

The exponential decay above assumes an infinite time extent, ) = ∞. We incorporate the

effects of a finite-) using next-to-leading-order chiral perturbation theory. There the exponential

decay with the two-pion energy gets replaced by the following cosh-type form:

exp(−�2c C) −→
cosh[�2c (C − )/2)] + 1

cosh(�2c)/2) − 1
. (27)

In the case of the isospin-symmetric disconnected propagator the bounds are

0 ≤ −�disc(C) ≤ 1
10
� light(C2)

i(C)

i(C2)
+ �strange(C) + �charm(C). (28)

Since the strange and charm terms fall off much faster than the light and disconnected one, their

contribution does not change the value of C2 obtained.

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
0
0
5

Muon 6 − 2: BMW calculation of HVP B. C. Toth

5. Finite-size effects

We compute finite-size effects on 0` in a systematic way, which includes dedicated lattice

simulations, chiral perturbation theory and phenomenological models. The concrete goal is to

provide a single number that is to be added to the continuum-extrapolated lattice result obtained in

a reference box, which is defined by a spatial extent of !ref = 6.272 fm and a temporal extent of

)ref =
3
2
!ref . For a more extensive description see Ref. [8].

We perform dedicated lattice simulations with two different lattice geometries: one is a

56 × 84 lattice with the reference box size and the other is a large 96 × 96 lattice with box

size ! = !big = 10.752 fm and ) = )big = !big. Since taste violations distort the finite-size effects,

we designed a new action with highly-suppressed taste breaking, which we call 4HEX (see [8]). Our

strategy is then to compute the finite-size correction as the following sum:

0` (∞,∞) − 0` (!ref , )ref) =

= [0` (!big, )big) − 0` (!ref , )ref)]4HEX + [0` (∞,∞) − 0` (!big, )big)]XPT.
(29)

The first difference on the right hand side is taken from the dedicated 4HEX simulations. The second

difference is expected to be much smaller than the first and is taken from a non-lattice approach:

two-loop chiral perturbation theory.

We consider four non-lattice approaches to compute both differences on the right hand side of

Equation (29). In the case of the first difference, the results obtained are compared to our 4HEX

simulations. The first approach is chiral perturbation theory (XPT) to next-to-leading and next-

to-next-to-leading orders (NLO and NNLO), the second is the Meyer-Lellouch-Luscher-Gounaris-

Sakurai model (MLLGS), the third approach is that of Hansen and Patella (HP) [31] and the fourth

is the rho-pion-gamma model of [32], which we abbreviate as RHO here.

We compute the first difference in Equation (29) using dedicated simulations with the 4HEX

action. We use the harmonic-mean-square (HMS) to set the physical point:

"−2
c,HMS ≡

1

16

∑

U

"−2
c,U ,

defined as an average over the masses of the 16 pion tastes, "c,U. We set "c,HMS to the physical

value of the pion mass, which requires lowering the Goldstone-pion mass to 110 MeV. This way

of fixing the physical point results in much smaller lattice artefacts than the usual setting with the

Goldstone-pion, at least for an observable like the finite-size effect. To generate the 4HEX data

set, we performed simulations with two different Goldstone pion masses: "c = 104 MeV and

121 MeV. To set the physical point as described above, we perform an interpolation from these two

pion masses to "c = 110 MeV.

To compute 0
light
` from the current propagator in our 4HEX simulations we use the upper and

lower bound technique described in Section 4.2. Results for the "c = 121 MeV simulation point

are plotted in Figure 3. The bounds meet at around 4.2 fm and 4.7 fm on the small and large

volumes, respectively. At these distances we take the average of the two bounds as an estimate for

0
light
` .

We only have one lattice spacing with the 4HEX action, so the finite-size effects cannot be

extrapolated to the continuum limit. We estimate the cutoff effect of the result by comparing 0
light
`

10
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Figure 3: Upper and lower bounds on the light isospin-symmetric component of 0`. The results shown

here are obtained with the 4HEX action on two different volumes at 0 = 0.112 fm lattice spacing and

"c = 121 MeV Goldstone-pion mass. We also have another simulation with "c = 104 MeV mass. From

these two we interpolate to "c = 110 MeV.

with the 4HEX action at this single lattice spacing to the continuum extrapolated 4stout lattice

result, both in the !ref volume. The 4HEX result is about 7% larger than the continuum value.

Therefore we reduce the measured finite-size effect by 7%, and assign a 7% uncertainty to this

correction step. For the difference we get

0` (!big, )big) − 0` (!ref , )ref) = 18.1(2.0)stat(1.4)cont . (30)

The result includes a
(

9
10

)
charge factor, and the first error is statistical and the second is an estimate

of the cutoff effect.

The finite-size effects computed in various non-lattice approaches are collected in Table 1.

Except for the NLO result, the different models give finite-size effects of similar size, which agree

well with the lattice determination of Equation (30). We also see that, according to the models, the

finite-) effect is much smaller than the finite-! effect.

The good agreement for the finite-size effect in the reference box, between the models and the

lattice, gives us confidence that the models can be used to reliably compute the very small, residual,

finite-size effect of the large box. The corresponding model estimates can be found in Table 1. For

an infinite-time extent the NNLO XPT, the HP and RHO approaches agree nicely. As a final value

for the large-box, finite-size effect we take the NNLO XPT result including finite-) effects:

0` (∞,∞) − 0` (!big, )big) = 0.6(0.3)big ,

where the uncertainty is an estimate of higher-order effects, given here by the difference of the

NNLO and NLO values.

For our final result for the finite-size effect in the reference box, we also include the contribution

of isoscalar channel and isospin-breaking effects giving:

0` (∞,∞) − 0` (!ref , )ref) = 18.7(2.0)stat(1.4)cont(0.3)big(0.6)�=0(0.1)qed [2.5] .

11
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NLO XPT NNLO XPT MLLGS HP RHO

0` (!big, )big) − 0` (!ref , )ref) 11.6 15.7 17.8 − −

0` (!big,∞) − 0` (!ref ,∞) 11.2 15.3 17.4 16.3 14.8

0` (∞,∞) − 0` (!big, )big) 0.3 0.6 − − −

0` (∞,∞) − 0` (!big,∞) 1.2 1.4 − 1.4 1.4

Table 1: Finite-size effect in the reference box of the isospin-symmetric component of 0`. The figures are

obtained in various model approaches.

The first error is the statistical uncertainty of our 4HEX computation, the second is an estimate of

the 4HEX cutoff effects, the third is the uncertainty of the residual finite-size effect of the “big”

lattice, the fourth is a XPT estimate of the � = 0 finite size effect and the fifth is an estimate of

the isospin-breaking effects. The last, total error in the square-brackets is the sum of the first five,

added in quadrature.

6. Taste improvement

As is well known, some of the most important cutoff effects of staggered fermions are taste

violations. At long distances, these violations distort the pion spectrum. Since 0` is predominantly

a long-distance observable, dominated by a two-pion contribution, including the d resonance, we

expect these effects to be largest in the light-quark terms.

We investigate various physically motivated models for reducing long-distance taste violations

in our lattice results. We consider three techniques: next-to-next-to-leading order chiral perturbation

theory (NNLO XPT), a Meyer-Lellouch-Lüscher-Gounaris-Sakurai model (MLLGS) and the rho-

pion-gamma model (RHO). A detailed exposition of these models can be found in the Supplementary

Material of Ref. [8]. We investigate and discuss the suitability of their staggered versions for

reducing the taste violations present in our lattice data. We call the resulting corrections taste

improvements, because they improve the continuum extrapolation of our lattice data without, in

principle, modifying the continuum-limit value. Indeed, these corrections vanish in that limit, as

taste-breaking effects should. These improvements are applied on light-quark observables at the

isospin-symmetric point, whose taste violations have the largest impact on our final uncertainties.

The models NNLO XPT, MLLGS and RHO describe the long-distance physics associated

with finite-volume effects, as measured in our simulations. One can also define corresponding

models describing the taste violations, they are denoted NNLO SXPT, SMLLGS and SRHO. We

find that they describe the physics associated with taste violations, at least at larger distances. This

is illustrated in Figure 4, where cutoff effects in the integrand of 0
light
` are plotted as a function of

Euclidean time. More specifically, we define the physical observable, obtained by convoluting the

integrand of 0
light
` with a smooth window function

, (C; C1, C2) ≡ Θ(C; C1,Δ) − Θ(C; C2,Δ) with Θ(C; C ′,Δ) ≡ 1
2
+ 1

2
tanh[(C − C ′)/Δ] (31)

of a width of C2 − C1 = 0.5 fm and starting at a time of C1. Then we consider the difference in the

value of this observable, obtained on a fine and a coarse lattice at a sequence of C1 separated by

12
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0.1 fm. These are compared to the NLO SXPT, NNLO SXPT, SRHO and SMLLGS predictions for

this quantity, evaluated at the exact parameters of the ensembles.

The SMLLGS, the SRHO and the NNLO SXPT taste improvements describe the numerical

data very nicely for C1 >∼ 2.0 fm, fairly well for C1 >∼ 1.0 fm and all the way down to C1 ≃ 0.4 fm

in the case of SRHO. All three slightly overestimate the observed cutoff effects, the rho-meson

based approach performing best, whereas NNLO displays a large deviation from the lattice results

in the C1 ≤ 0.8 fm region. The lattice results have a maximum at C1 = 1.4 fm, as does the SRHO

improvement, reinforcing our confidence that this model captures the relevant physics.

These findings lead us to apply the following taste corrections to our simulations results for

0
light
` (!,), 0), obtained on an !3 × ) lattice with lattice spacing 0, before performing continuum

extrapolations:

0
light
` (!,), 0) → 0

light
` (!,), 0) + 10

9

[
0RHO
`,C≥Csep

(!ref , )ref) − 0
SRHO
`,C≥Csep

(!,), 0)
]
,

with Csep = 0.4, 0.7, 1.0, 1.3 fm, and where the factor (10/9) is related to the quark charges. Note

that by using !ref and )ref in the above Equation, we are applying a very small volume correction

to interpolate all of our simulation results to the same reference, four-volume so that they can be

extrapolated to the continuum limit together.

The taste-improved data is then extrapolated to the continuum using our standard fit procedure,

in the course of which isospin-breaking effects are also included. For estimating the systematic

error we use a histogram technique [8].

The procedure described above does not yet take into account the systematic uncertainty

associated with our choice of SRHO for taste improvement for C > 1.3 fm. Since applying no taste

improvement in that region is not an option, because of the nonlinearities introduced by two-pion,

taste violations, we turn to NNLO SXPT, only as a means to estimate the uncertainty associated

with this choice. Thus, we define this systematic uncertainty as ERR = (SRHO − NNLO SXPT)

for C > 1.3 fm. Then, we perform the same histogram analysis but with SRHO, SRHO-ERR and

SRHO+ERR improvements. From this histogram we extract the contribution which comes from the

variation in the improvement model from SRHO-ERR to SRHO+ERR. We assign this full spread

to the systematic uncertainty associated with the taste-improvement procedure. We add this error

in quadrature to the error given by the histogram technique discussed in the previous paragraph.

7. Intermediate window

The work [33] defined a particularly useful observable 0`,win, in which the current propagator

is restricted to a time window [C1, C2], using the smooth weight function , (C; C1, C2) defined in

Equation (31). The advantage of 0`,win over 0` is that, by choosing an appropriate window, the

calculation can be made much less challenging on the lattice than for the full 0`. Here we will

be interested in the window between C1 = 0.4 fm and C2 = 1.0 fm, i.e. in an intermediate time

range. By this choice we eliminate both the short-distance region, where large cutoff effects are

present, and the long-distance region, where the statistical uncertainties and finite-size effects are

large. Moreover, in the case of staggered fermions, it has reduced taste-breaking artefacts. This

is shown in Figure 5, where the light, connected component of 0`,win is plotted as a function of
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Figure 4: Isospin-symmetric component of 0
light
` computed with a sliding window. The window starts

at C1 and ends 0.5 fm later. The plot shows the difference between a fine and a coarse lattice, whose sizes

are ! = 6.14 fm and ! = 6.67 fm. The black squares with errors are obtained from the simulation. The

colored curves are the predictions of NLO and NNLO SXPT, the SRHO and the SMLLGS models. They are

computed at the parameters (pion mass, taste violation, volume) of the simulations.

02. Because the determination of this quantity does not require overcoming many of the challenges

described above, other lattice groups have obtained it with errors comparable to ours [28, 33]. This

allows for a sharper benchmarking of our calculation of this challenging, light-quark contribution

that dominates 0`. Our 0
light

`,win
differs by 0.2f and 2.2f from the lattice results of [28] and [33],

respectively. Moreover, 0`,win can be computed in the R-ratio approach [8]. However, here we find

a 3.7f tension with our lattice result.

8. Conclusions

Combining all of these ingredients we obtain, as a final result, 0` = 707.5(2.3) (5.0) [5.5].

The first, statistical error comes mostly from the noisy, large-distance region of the current-current

correlator. The second, systematic error is dominated by the continuum extrapolation and the finite-

size effect computation. The third, total error is obtained by adding the first two in quadrature. In

total we reach a relative accuracy of 0.8%.

Figure 6 compares our result with previous lattice computations and also with results from

the R-ratio method, which have recently been reviewed in [3]. As one can see, there is a tension

between our result and those obtained by the R-ratio method. For the total, LO-HVP contribution to

0`, our result is 2.0f, 2.5f, 2.4f and 2.2f larger than the R-ratio results of 0` = 694.0(4.0) [39],

0` = 692.78(2.42) [34], 0` = 692.3(3.3) [40, 41] and the combined result 0` = 693.1(4.0) of [3],

respectively. It is worth noting that the R-ratio determinations are based on the same experimental

data sets and are therefore strongly correlated, though these data sets were obtained in several

different and independent experiments that we have no reason to believe are collectively biased.

Clearly, these comparisons need further investigation.

To conclude, when combined with the other standard model contributions (see eg. [3]), our

result for the leading-order hadronic contribution to the anomalous magnetic moment of the muon,
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Figure 5: Continuum extrapolation of the isospin-symmetric, light, connected component of the window

observable 0`,win, denoted by [0
light

`,win
]iso. The data points are extrapolated to the infinite-volume limit. Two

different ways to perform the continuum extrapolations are shown: one without improvement, and another

with corrections from a model involving the d-meson (SRHO). In both cases the lines show linear, quadratic

and cubic fits in 02 with varying number of lattice spacings in the fit. The continuum extrapolated result

is shown with the results from other lattice groups, RBC’18 [33] and Aubin’19 [28]. Also plotted is our

R-ratio-based determination, obtained using the experimental data compiled by the authors of [34] and our

lattice results for the non light connected contributions. This plot is convenient for comparing different lattice

results with each other. Regarding the total 0`,win, for which we also have to include the contributions of

other-than-light flavors and isospin-breaking effects, we obtain 236.7[1.4] on the lattice and 229.7[1.3] from

the R-ratio, the latter is 3.7f or 3.1% smaller than the lattice result.

CHHKS’19
KNT’19

DHMZ’19
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BMWc’17
RBC’18
ETM’19
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BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ
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Figure 6: Comparison of recent results for the leading-order, hadronic vacuum polarization contribution to

the anomalous magnetic moment of the muon. See [3] for a recent review. Green squares are lattice results:

this work’s result, denoted by BMWc’20 and represented by a filled symbol at the top of the figure, is followed

by LM’20 [35], Mainz’19 [36], FHM’19 [37], ETM’19 [38], RBC’18 [33] and our earlier work BMWc’17

[23]. Red circles were obtained using the R-ratio method: the combined result WP’20 [3] is followed by

DHMZ’19 [39], KNT’19 [34] and CHHKS’19 [40, 41]; these results use the same experimental data as

input. The blue shaded region is the value that 0LO−HVP
` would have to have to explain the experimental

measurement of (6` − 2), assuming no new physics.
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weakens the longstanding discrepancy between experiment and theory. However, as discussed above

and can be seen in Figure 6, our lattice result shows some tension with the R-ratio determinations.

Obviously, our findings should be confirmed –or refuted– by other collaborations using other

discretizations of QCD.
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