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Recently, the hadronic vacuum polarization contribution to the anomalous magnetic moment of
the muon was determined by the BMW collaboration with sub-percent precision. Such a precision
requires to controlmany sources of uncertainty. One of these is the uncertainty in the determination
of the lattice spacing. In this talk, we present the scale setting entering this computation. It relies
on the mass of theΩ baryon as input which is directly used to set the scale of our main calculation.
It also allows us to calculate the value of the intermediate scale setting quantity w0. Here, we
present our calculation of this quantity with a relative precision of about 0.4%.
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1. Introduction

This work is part of the lattice determination of the anomalous magnetic moment aµ of the
muon by the BMW collaboration that was published in [1]. To achieve the precision necessary
for a meaningful comparison with experiments, many sources of errors had to be controlled. One
such source is the determination of the lattice scale which is described in this contribution. For
an overview of the whole calculation, see also [2]. For our main analysis of aµ, we set the scale
directly with the mass of the omega baryon. To keep this contribution as self contained as possible,
however, the determination of w0 [3] using the omega mass is explained. Besides being a useful
quantity by itself, it was also used in [1] to determine the individual isospin splitting contributions
to aµ.

In the first section, the determination of the omega mass on individual ensembles of gauge
configurations is discussed, both for the isospin symmetric, pure QCD part as well as for the strong
isospin breaking and QED corrections. After that, in a second section, our global fits are briefly
explained with a special emphasis on the determination of w0.

2. Mass of the omega baryon

Any precise determination of the lattice scale requires a precisely known input quantity. In this
work, we choose the mass of the omega baryon. It can be measured both in experiment [4] and on
the lattice with sufficient precision.

Our calculation is based on a set of 22 ensembles of gauge configurations generated with a
Symmanzik improved gauge action. The 2+ 1+ 1 flavors of the dynamical fermions are realized by
a staggered action constructed from four times stouts smeared gauge fields. On top of these QCD
configuration QED configuration where generated. For details of the action and the methods used
to generated the configurations, see [1]. The configurations where generated at six values of the
gauge coupling β and the lattice spacing a ranges from 0.132 fm to 0.064 fm. The quark masses
where chosen such that the ensembles scatter closely around the physical point to allow for a reliable
interpolation to the physical point.

In the first part of this section, the accurate lattice determination of the omega mass in pure
QCD is discussed. In the second part, the calculation of the QED corrections, which are important
at the target accuracy, is discussed.

2.1 QCD contributions

The mass of the omega baryon can be calculated by studying the exponential falloff of the
correlation function of two suitably chosen temporally separated interpolating operators. In the
staggered formulation, translations by one lattice spacing are intertwined with transformations
among the spinor degrees of freedoms of the quark fields. Hence, the construction of interpolating
operators that couple to specific hadrons is more complicated than in the case of e.g. Wilson
fermions. For mesons, constructions of such operators are discussed in [5]. For the construction of
baryon operators, see [6]. Amongst these baryon operators, the ones labeled as VI and XI couple
to the omega baryon as the lowest state. The operators can be constructed from a staggered quark
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Figure 1: The effective mass of the three operators used
for the omega mass determination on the coarsest ensem-
ble. The green data points show the effective masses
calculated directly from the correlation function of the
respective operators. The red band indicates the ground
state mass as extracted with a multistate fit (for details
see main text). The red dotted line indicates the effective
mass of that multistate fit.

field χ by employing

OXI(t) =
∑
®x,xt=t
xi even

εabc
[
(D1χ

a)(D12χ
b)(D13χ

c) − (D2χ
a)(D21χ

b)(D23χ
c)

+(D3χ
a)(D31χ

b)(D32χ
c)

]
, (1a)

OVI(t) =
∑
®x,xt=t
xi even

εabc(D1χ
a)(D2χ

b)(D3χ
c) (1b)

where
Di χ(x) =

1
2

(
χ

(
x − î

)
+ χ

(
x + î

))
and Di j = DiDj . (2)

The omega baryon, however, comes in multiple staggered tastes which become degenerate only in
the continuum limit. The operators shown above couple to more then one of these tastes. In [7] an
additional flavour degree of freedom is used to construct an operator which solely couples to one
taste of the omega baryon. This operator reads

OBa =
[
2δα1δβ2δγ3 − δα3δβ1δγ2 − δα2δβ3δγ1 + (· · · β↔ γ · · · )

]
×

εabc
(
(D1χ

a
α(x))(D12χ

b
β (x))(D13χ

c
γ (x)) − (D2χ

a
α(x))(D21χ

b
β (x))(D23χ

c
γ (x)) +

(D3χ
a
α(x))(D31χ

b
β (x))(D23χ

c
γ (x)

)
where the Greek indices refer to the additional flavour degree of freedom. We applied Wuppertal
smearing [8], but with a kernel that includes only two-hop terms, to all three operators. For the gauge
field appearing in this kernel we applied multiple steps of stout smearing [9] in three dimensions.
For details, see [1].

We have compared the performance of the three operators mentioned above on the coarsest
ensemble for which we generated about 3000 extra configuration that where used only to compare
the three operators with an increased precision. In figure 1 the extracted mass is shown for all
three operators. As it can be seen, even on this ensemble the three values agree within errors.
Furthermore, the difference between the largest and the smallest value is of the same size than the
typical statistical and systematic error on the masses extracted on other ensembles. We conclude
that it is therefore justified to use the VI operator to extract the mass of the omega baryon.

Due to the presence of excited states in the correlation functions of the interpolating operators,
a simple one-state ansatz does not allow for a controlled extraction of the ground state mass.
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Consequently, excited states must be included in the analysis. For this purpose, we employed two
procedures: The first one was a fit with a ansatz containing four states. In the second one we
used a generalized eigenvalue problem (GEVP) based on a matrix constructed out of time shifted
correlation functions [10].

In the first approach, we considered the first four lowest energy states and fitted the resulting
ansatz to the correlation function. Neglecting contributions with even higher energy, the correlation
function has the form

H(t; A, M) = A1h+(t; M0) + A2h−(t; M2) + A3h+(t; M3) + A4h−(t; M4) + · · · (3a)

where

h+(t, M) = e−Mt + (−1)t−1e−M(t−T ), (3b)

h−(t, M) = −h+(T − t, M). (3c)

Each of the terms corresponds to one state and the sign factors included in the h± originate from
the staggered structure. The function in equation (3a) has 8 free parameter. Four masses and four
prefactors. To stabilize the fit, we imposed priors on all but the ground state mass. These priors
are motivated by measured excited states of the omega baryon [11] and quark model predictions
[12] further motivated by [13, 14]. The central values of the priors where 2021MeV, 2250MeV,
and 2400MeV. The width where chosen to be 10 %, 10 %, and 15 %. No priors where applied to
the prefactors. Since at early times, more than four states contribute to the correlation functions,
we varied the time range of the fit. In addition, we fitted all ensembles at a given gauge coupling
together by assuming that the quark mass dependencies of the mass parameters can be described
by a linear function of the strange quark mass. The results from these fits combining multiple
ensembles did not enter our main analysis but only served as a crosscheck.

As a complementary procedure, we also applied a GEVP based approach [10]. For that purpose
we constructed the matrix

H(t) =
©­­­­«
Ht+0 Ht+1 Ht+2 Ht+3

Ht+1 Ht+2 Ht+3 Ht+4

Ht+2 Ht+3 Ht+4 Ht+5

Ht+3 Ht+4 Ht+5 Ht+6

ª®®®®¬
. (4)

On such a matrix the well know staggered variational approach [16] can be applied. We solved the
GEVP

H(t0)®v(ta, tb) = λ(ta, tb)H(t1)®v(ta, tb) (5)

for two times t0 and t1 and then constructed a projected correlation function

Ci(t) = ®v
†

i (t1, t2)H(t)vi(t1, t2) (6)

from the i-th generalized eigenvector ®vi. This projected correlation function is a linear combination
of the time shifted correlation functions entering the matrix in equation (4). In contrast to the
individual contributions in this matrix, the excited state contamination is however greatly reduced
in C(t). The effect of this procedure on a mock correlation function can be seen in figure 2 We
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Figure 2: The effect of the GEVP based procedure as described in the main text on the effective mass. The
black dots show the 2-lag effective mass of a mock correlation function and the colored dots show the same
effective mass of the projected correlation function. The mock correlation function contains 6 states. For the
the left panel, a 6 × 6 matrix was employed whereas for the right panel, a 4 × 4 matrix was employed. The
overlap with the ground state is improved significantly in both cases

0 5 10 15 20 25 30 35 40
t/a

0.50

0.55

0.60

0.65

0.70

0.75

m
a

gevp ground state
prior in 4state fit
state 0
state 1 Figure 3: The projected correlation function for the

groundstate and the first excited states on one en-
semble. The dot show the effective masses of the
projected correlation functions. The lower band in-
dicate the mass extracted by a single exponential
fit to the projected correlation function. The upper
band is not obtained by the fit but indicates the width
of the prior used in the alternative four state fit ap-
proach. As it can be seen, the first excited state mass
as seen by the GEVP method is consistent with the
prior.

used a standard one-state ansazt to extract the ground state mass from C0(t). The performance of
the GEVP based method is shown for one ensemble in figure 3. There, also the effective mass of
C1(t) is shown and compared to the prior for the first excited state in the four state fit approach. No
priors are necessary for the GEVP based approach.

For our final determination, we employed three fits per ensemble: Two four state fits with
different fit ranges and one combination of times for the GEVP base method. The combinations
of fit ranges can be found in [1]. For each of the three procedures, a Kolmogorov-Smirnov test
[15] was used to verify hat the resulting χ2 values where distributed as expected. For one value of
the gauge coupling, the values of the omega masses determined with the described methods, are
compared in figure 4.

2.2 QED contributions

The correlation function of a baryon operator in QCD+QED can be written to quadratic order
in the valence and sea electrical charge and linear order in the strong isospin breaking as

〈H〉QCD+QED ≈ 〈H〉|0 +
δm
ml
· 〈H〉′m +

e2
v

2
· 〈H〉′′20 + eves · 〈C〉′′11 +

e2
s

2
· 〈H〉′′02. (7)
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Figure 4: Comparison between the different determination of
the omega mass on four ensemble with gauge coupling β =

3.84.

For more details of the formalism, see [1, 2, 17]. To determine the mass corrections, we apply
the effective massM[H] to H instead of the four state fits or GEVP based extractions because it
features a closed form derivative with respect to the values of the correlation function H at different
times which will be denoted as δM[H]/δH. This allows to derive expression for the QED and
strong isospin breaking correction to hadron masses. These corrections are

M0 =M[〈H0〉0] (8a)

M ′′02 =
δM[H]
δH

����
〈H0 〉0

〈H〉′′02 =
δM[H]
δH

����
〈H0 〉0

〈
(H0 − 〈H0〉0)

dets′′2
dets0

〉
(8b)

M ′′20 ≈
1
e2
v

(M[
1
2
〈H+ + H−〉0] −M[〈H0〉0]) (8c)

M ′′11 ≈
δM[H]
δH

����
〈H++H− 〉0

〈
H+ − H−

2ev

dets′1
dets0

〉
0

(8d)

M ′m ≈
ml

δm
(M[〈Hδm〉0] −M[〈H0〉0]) (8e)

where 〈· · · 〉0 is the QCD expectation value of · · · , H0 is a combination of interpolating operators
that can be used to measure the Omega mass in QCD, H± are similar operators with positive and
negative charges, Hδm is a combination of interpolating operators with finite strong isospin breaking
and dets0, dets′1, and dets′′2 are the appropriate products of quartic roots of fermion determinant and
their first and second derivative with respect to the sea electric charge.

3. Global fits and the determination of w0

For the determination of w0 at the physical point and in the continuum, we employed a global
fit. The approach discussed here is described in [1] under the name of Type 1 fit. For other global
fits used in the determination of aµ, especially to define the isospin splitting contributions, see that
work. Let Y = w0MΩ. In general, such a dimensionless observable can be expanded around the
physical point as

Y = A + BXl + CXs + DXδm + Ee2
v + Feves + Ge2

s (9)

where

Xl = M2
π0/M

2
Ω
−

[
M2
π0/M

2
Ω

]
∗
, Xs = M2

Kχ
/M2
Ω
−

[
M2

Kχ
/M2
Ω

]
∗
, Xδm =

(MK0 − MK+)
2

M2
Ω

(10)
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with M2
Kχ
= 1

2 (M
2
K0 +M2

K+
−M2

π+
) are suitable parametrizations of the light and strange quark mass

deviations from the physical point and of the strong isospin splitting. The coefficients A, . . . ,G are
not assumed constant but to depend on the lattice spacing a, Xl, and Xs according to

A = A0 + A2
[
a2αn

s (1/a)
]
+ A4

[
a2αn

s (1/a)
]2
+ A6

[
a2αn

s (1/a)
]3 (11a)

B = B0 + B2a2 (11b)

C = C0 + C2a2 (11c)

D = D0 + D2a2 + D4a4 + DlXl + DsXs (11d)

E = E0 + E2a2 + E4a4 + ElXl + EsXs (11e)

F = F0 + F2a2 (11f)

G = G0 + G2a2 (11g)

where Ai, . . . ,Gi are parameters to be determined by a fit and n determines the power of the αs
corrections to the continuum approach of the A term. For more details see [1].

Assuming [. . .]0 to be the pure isospin symmetric QCD part of a given observable and [. . .]′m,
[. . .]′′20, [. . .]

′′
11, [. . .]

′′
02 being the first and second order derivatives with respect to the strong isospin

breaking and the valence-valence, valence-sea, and and sea-sea electric charges, equation (9) can
be written as

[Y ]0 = [A + BXl + CXs]0 (12a)

[Y ]′m = [DXδm]′m (12b)

[Y ]′′20 = [A + BXl + CXs + DXδm]′′20 + [E]0 (12c)

[Y ]′′11 = [A + BXl + CXs + DXδm]′′11 + [F]0 (12d)

[Y ]′′02 = [A + BXl + CXs + DXδm]′′02 + [G]0 (12e)

For the observable Y = w0MΩ, there is no strong isospin breaking component and hence equation
(12b) is not needed. The other equations can be fitted to the lattice data in a simultaneous fit
that takes into account the statistical correlations between the various quantities appearing in these
equations.

Not all of the parameters listed above contribute to the determination of every observable. For
this specific observable, we always enabled the parameters A0, A2, C0, E0, F0, G0 and set n = 0.
To estimate the systematic uncertainty of our determination, we varied our global fitting form and
the mass fits: One set of variations relates to changes in the fitranges and methods of the mass fits
for the omega mass and for the pseudoscalar meson masses. Another set of variation is introduced
by imposing various cuts on the lattice spacing included in the fit. To estimate the systematic
uncertainty introduced by our expansion we switched the fit parameters A4, B0, C2, E2, El, Es, F2,
and G2 on and off. We also varied the input mass of the omega baryon within the experimental
uncertainty. All these variation lead to a large number of fits that we combine with the histogram
method described in [1]. Some representative fits are shown in figure 5. We arrive at a result of

w0 = 0.17236(29)(63)[70] fm. (13)
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Figure 5: The continuum approach of the components in equations (12) and some representative global fits.
The red points are the values of the components of Y measured on the various configurations. These points
have already been extrapolated using the global fit with linear a2 dependence to the physical point. For some
fits these extrapolations yield significant different points. In that case, the points are shown in grey.

4. Conclusion

Wehave determined thew0 scale in the continuum limit in full 2+1+1 flavour QCD+QED. This
result can be used to precisely set the scale in subsequent lattice calculation. The method described
here for the scale setting with the omega mass was also used in the high precision determination of
the anomalous magnetic moment published in [1].
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