000916695 001__ 916695
000916695 005__ 20230123101906.0
000916695 037__ $$aFZJ-2023-00035
000916695 1001_ $$0P:(DE-Juel1)190717$$aJiang, Zhongyi$$b0$$eCorresponding author$$ufzj
000916695 1112_ $$aQSolid WP6 Workshop$$cMünchen$$d2022-10-17 - 2022-10-18$$wGermany
000916695 245__ $$aSWAP Gate from Frequency Modulation and Nanowire Superconducting Qubits
000916695 260__ $$c2022
000916695 3367_ $$033$$2EndNote$$aConference Paper
000916695 3367_ $$2DataCite$$aOther
000916695 3367_ $$2BibTeX$$aINPROCEEDINGS
000916695 3367_ $$2DRIVER$$aconferenceObject
000916695 3367_ $$2ORCID$$aLECTURE_SPEECH
000916695 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1672835038_27125$$xInvited
000916695 520__ $$aRealizing high fidelity entanglement gates is a major task for near-term quantum hardware. Withhigher fidelity gates achieved in experiments, more accurate theoretical methods are needed. Here,using non-perturbative formalism, we theoretically study an iSWAP gate activated by frequencymodulation in a transmon-transmon pair. We make a comprehensive analysis to directly solving thetime-dependency and introduce a continuous set of Fermionic Simulation gates by tuning qubit-qubitdetuning and pulse phase.Conventional Josephson junction-based qubits are promising candidates for practical quantumprocessors. Although high-quality qubits and high-fidelity gates have been routinely fabricated, qubitcoherence time is hindered by several material-based artefacts and losses, such as defects in Josephsonjunctions due to the fabrication procedure. Recently nanowire qubits have shown a possible candidatefor unconventional junction. They serve as weakly anharmonic inductors without interface defects. T1and T2 of microsecond order have been observed. We study the problem theoreticall and try totheoretically analyze the current-phase relation, anharmonicity, and coherence times in nanowirequbits. This paves the way to study nanowire qubits in circuit-QED setup further.
000916695 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000916695 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad H.$$b1$$ufzj
000916695 909CO $$ooai:juser.fz-juelich.de:916695$$pVDB
000916695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190717$$aForschungszentrum Jülich$$b0$$kFZJ
000916695 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
000916695 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000916695 9141_ $$y2022
000916695 920__ $$lyes
000916695 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000916695 980__ $$aconf
000916695 980__ $$aVDB
000916695 980__ $$aI:(DE-Juel1)PGI-2-20110106
000916695 980__ $$aUNRESTRICTED