% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Pazem:916698,
author = {Pazem, Josephine and Ansari, Mohammad},
title = {{I}mproving the resilience of quantum denoising process},
reportid = {FZJ-2023-00038},
year = {2022},
abstract = {Quantum autoencoders aim to automate denoising algorithms.
These quantum neural networks are trained to surpass noise
channels and return arbitrary entangled states of our
interest with high-fidelity. So far the successful training
has shown tolerance up to $30\%$ of bit flip and
depolarization. Stronger noise results in poor training and
denoising failure. [1]In this talk I describe an inexpensive
change in the network topology that can be extendable to all
scales and can improve the tolerance significantly. This has
a side advantage that it can provide even higher fidelity
values for successful training. It indeed helps the encoder
by reducing the dimension of the decision boundary between
perfect and noisy states. Such a simplification of the
classification task relies heavily on quantum properties of
the neural units. We show that Renyi entropy associated with
a small partition of the network undergoes a second order
phase transition when training fails, and this can serve as
a good measure to distinguish between failure and success in
denoising process. [1] D. Bondarenko and P. Feldmann,
“Quantum autoencoders to denoise quantum data”, Phys.
Rev. Lett., vol. 124, no. 13, p. 130502, 2020.},
month = {Mar},
date = {2022-03-14},
organization = {APS Meeting 2022, Chicago (USA), 14
Mar 2022 - 18 Mar 2022},
subtyp = {Invited},
cin = {PGI-2},
cid = {I:(DE-Juel1)PGI-2-20110106},
pnm = {5224 - Quantum Networking (POF4-522)},
pid = {G:(DE-HGF)POF4-5224},
typ = {PUB:(DE-HGF)6},
url = {https://juser.fz-juelich.de/record/916698},
}